留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态脱碳过程中碳的扩散行为研究

祝广鹏 艾立群 洪陆阔 孟凡峻 闻莉 孙彩娇

祝广鹏, 艾立群, 洪陆阔, 孟凡峻, 闻莉, 孙彩娇. 固态脱碳过程中碳的扩散行为研究[J]. 钢铁钒钛, 2024, 45(6): 127-132. doi: 10.7513/j.issn.1004-7638.2024.06.017
引用本文: 祝广鹏, 艾立群, 洪陆阔, 孟凡峻, 闻莉, 孙彩娇. 固态脱碳过程中碳的扩散行为研究[J]. 钢铁钒钛, 2024, 45(6): 127-132. doi: 10.7513/j.issn.1004-7638.2024.06.017
Zhu Guangpeng, Ai Liqun, Hong Lukuo, Meng Fanjun, Wen Li, Sun Caijiao. Study on the diffusion behavior of carbon during solid-state decarbonization process[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 127-132. doi: 10.7513/j.issn.1004-7638.2024.06.017
Citation: Zhu Guangpeng, Ai Liqun, Hong Lukuo, Meng Fanjun, Wen Li, Sun Caijiao. Study on the diffusion behavior of carbon during solid-state decarbonization process[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 127-132. doi: 10.7513/j.issn.1004-7638.2024.06.017

固态脱碳过程中碳的扩散行为研究

doi: 10.7513/j.issn.1004-7638.2024.06.017
基金项目: 河北省自然科学基金(E2021209101, E2022209112);中央引导地方科技发展资金项目(236Z1006G);河北省高等学校科学技术研究项目(ZD2022125);唐山市人才资助项目(A20220212)。
详细信息
    作者简介:

    祝广鹏,1997年出生,男,河北唐山人,硕士生,研究方向:炼钢新技术,E-mail:zgp1boy@163.com

    通讯作者:

    洪陆阔,1986年出生,男,博士,研究方向:炼钢新技术与资源综合利用,E-mail:honglk@ncst.edu.cn

  • 中图分类号: TF746,TF704.5

Study on the diffusion behavior of carbon during solid-state decarbonization process

  • 摘要: 为研究Fe-C-Mn合金薄带固态脱碳过程脱碳效果及Mn含量对C原子扩散作用,以1 mm厚的Fe-2.7%C-(5%,12%)Mn合金成分薄带为研究对象进行固态脱碳试验,利用lammps软件开展分子动力学模拟试验,探索Mn含量对C原子扩散的定性规律。结果表明:分子动力学模拟结果同固态脱碳试验结果计算扩散激活能基本一致,5%Mn在1223、1323 K和1363 K温度下脱碳试验结果和分子动力学模拟理论结果得到的C原子的扩散激活能分别为78.549 kJ·mol−1和83.805 kJ·mol−1。在1363 K进行固态脱碳试验,5%Mn和12%Mn合金薄带5~20 min主要限制性环节为内部碳扩散,12%Mn脱碳效果不如5%Mn,表明Mn含量增加对C扩散起到抑制作用。分子动力学模拟结果表明Mn含量增加会降低C原子扩散能力。
  • 图  1  不同Mn含量对应的模拟模型

    Figure  1.  Simulation models corresponding to different Mn contents

    (a)5%Mn;(c)12%Mn

    图  2  固态脱碳炉

    Figure  2.  Solid state decarburization furnace

    图  3  不同温度下薄带平均碳含量随时间变化

    Figure  3.  The mean carbon content of thin strip changes with decarburization time at different temperatures

    图  4  不同温度下C的MSD随时间变化

    Figure  4.  The MSD of C at different temperatures varies with decarburization time

    图  5  不同温度下脱碳数据拟合曲线

    Figure  5.  Fitted curves of decarbonization data at different temperatures

    图  6  不同温度下C的扩散系数

    Figure  6.  Diffusion coefficient of C at different temperatures

    图  7  脱碳试验和分子动力学模拟结果对比

    Figure  7.  Comparison of results from decarbonization experiment and molecular dynamics simulation

    图  8  不同Mn含量薄带平均碳含量随时间变化曲线

    Figure  8.  The average carbon content of strip containing different manganese varies with decarburization time

    图  9  不同Mn含量MSD随时间变化关系曲线

    Figure  9.  Relationship of MSD of strip containing different Mn with decarburization time

  • [1] Li Yaqiang, Ai Liqun. The proposal and progress of new process research on solid-state steelmaking[J]. Foundry Technology, 2017,38(1):8-11. (李亚强, 艾利群. 固态炼钢新工艺研究的提出与进展[J]. 铸造技术, 2017,38(1):8-11.

    Li Yaqiang, Ai Liqun. The proposal and progress of new process research on solid-state steelmaking[J]. Foundry Technology, 2017, 38(1): 8-11.
    [2] Hong Lukuo, Ai Liqun. New process of solid steelmaking[J]. Industrial Metrology, 2015,25(S1):161-163. (洪陆阔, 艾立群. 浅谈固态炼钢新工艺[J]. 工业计量, 2015,25(S1):161-163.

    Hong Lukuo, Ai Liqun. New process of solid steelmaking[J]. Industrial Metrology, 2015, 25(S1): 161-163.
    [3] Park J O, Long T V, Sasaki Y. Feasibility of solid-state steelmaking from cast iron decarburization of rapidly solidified cast iron[J]. ISIJ International, 2012,98(5):151-160.
    [4] Lee W H, Park J O, Lee J S, et al. Solid state steelmaking by decarburisation of rapidly solidified high carbon iron sheet[J]. Ironmaking & Steelmaking, 2012,39(7):530-534.
    [5] Sharif S E, Mirjalili M, Khaki J V. A new approach in solid state steelmaking from thin cast iron sheets through decarburization in CaCO3 pack[J]. ISIJ International, 2018,58(10):1791-1800. doi: 10.2355/isijinternational.ISIJINT-2018-250
    [6] Sun Caijiao, Ai Liqun, Hong Lukuo, et al. Decarburization kinetics of iron-carbon alloy ribbons by gas-solid reaction in Ar-CO-CO2 atmosphere[J]. Materials Reports, 2021,35(24):24142-24146. (孙彩娇, 艾立群, 洪陆阔, 等. Ar-CO-CO2气氛下铁碳合金薄带气固反应脱碳动力学研究[J]. 材料导报, 2021,35(24):24142-24146.

    Sun Caijiao, Ai Liqun, Hong Lukuo, et al. Decarburization kinetics of iron-carbon alloy ribbons by gas-solid reaction in Ar-CO-CO2 atmosphere[J]. Materials Reports, 2021, 35(24): 24142-24146.
    [7] Sun Caijiao, Ai Liqun, Hong Lukuo, et al. Decarburization mechanism of Fe-C alloy in H2 / H2O atmosphere by gas-solid reaction[J]. Materials Reports, 2020,34(20):20112-20117. (孙彩娇, 艾立群, 洪陆阔, 等. H2/H2O气氛下Fe-C合金气固反应脱碳机理[J]. 材料导报, 2020,34(20):20112-20117.

    Sun Caijiao, Ai Liqun, Hong Lukuo, et al. Decarburization mechanism of Fe-C alloy in H2 / H2O atmosphere by gas-solid reaction[J]. Materials Reports, 2020, 34(20): 20112-20117.
    [8] Chen Pengfei, Ai Liqun. Study on gas-solid reaction decarburization of medium carbon domain iron-carbon alloy ribbons[J]. Iron Steel Vanadium Titanium, 2020,41(3):105-109. (陈鹏飞, 艾立群. 中碳域铁碳合金薄带气—固反应脱碳研究[J]. 钢铁钒钛, 2020,41(3):105-109.

    Chen Pengfei, Ai Liqun. Study on gas-solid reaction decarburization of medium carbon domain iron-carbon alloy ribbons[J]. Iron Steel Vanadium Titanium, 2020, 41(3): 105-109.
    [9] Hong Lukuo. Temperature and atmosphere control of gas-solid reaction decarburization of iron-carbon alloy ribbons[D]. Tangshan: North China University of Science and Technology, 2015. (洪陆阔. 铁碳合金薄带气—固反应脱碳温度与气氛控制[D]. 唐山:华北理工大学2015.

    Hong Lukuo. Temperature and atmosphere control of gas-solid reaction decarburization of iron-carbon alloy ribbons[D]. Tangshan: North China University of Science and Technology, 2015.
    [10] Cheng Rong. Kinetic analysis of gas-solid reaction decarburization of iron-carbon alloy ribbons[D]. Tangshan: North China University of Science and Technology, 2016. (程荣. 铁碳合金薄带气—固反应脱碳动力学分析[D]. 唐山:华北理工大学, 2016.

    Cheng Rong. Kinetic analysis of gas-solid reaction decarburization of iron-carbon alloy ribbons[D]. Tangshan: North China University of Science and Technology, 2016.
    [11] Hou Yaobin. Decarburization of Fe-C alloy by step heating in CO-CO2 atmosphere[D]. Tangshan: North China University of Science and Technology, 2021. (侯耀斌. CO-CO2气氛下分段加热对Fe-C合金脱碳研究[D]. 唐山:华北理工大学, 2021.

    Hou Yaobin. Decarburization of Fe-C alloy by step heating in CO-CO2 atmosphere[D]. Tangshan: North China University of Science and Technology, 2021.
    [12] Lee B J. A modified embedded-atom method interatomic potential for the Fe–C system[J]. Acta Materialia, 2006,54(3):701-711. doi: 10.1016/j.actamat.2005.09.034
    [13] Kim Y M, Shin Y H, Lee B J. Modified embedded-atom method interatomic potentials for pure Mn and the Fe–Mn system[J]. Acta Materialia, 2009,57(2):474-482. doi: 10.1016/j.actamat.2008.09.031
    [14] Rappé A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. Journal of the American Chemical Society, 1992,114(25):10024-10035. doi: 10.1021/ja00051a040
    [15] Wang Shaogang, Liu Cuixia, Jian Zengyun. Molecular dynamics simulation of diffusion coefficient of Al-Cu alloy[J]. Journal of Xi'an Technological University, 2018,38(6):559-564. (王少刚, 刘翠霞, 坚增运. Al-Cu合金扩散系数的分子动力学模拟研究[J]. 西安工业大学学报, 2018,38(6):559-564.

    Wang Shaogang, Liu Cuixia, Jian Zengyun. Molecular dynamics simulation of diffusion coefficient of Al-Cu alloy[J]. Journal of Xi'an Technological University, 2018, 38(6): 559-564.
    [16] Li Yaqiang, Ai Liqun, Li Qiang, et al. 1 mm iron-carbon alloy strip gas-solid reaction decarburization test[J]. Iron & Steel, 2017,52(5):19-23, 35. (李亚强, 艾立群, 李强, 等. 1 mm铁碳合金薄带气—固反应脱碳试验[J]. 钢铁, 2017,52(5):19-23, 35.

    Li Yaqiang, Ai Liqun, Li Qiang, et al. 1 mm iron-carbon alloy strip gas-solid reaction decarburization test[J]. Iron & Steel, 2017, 52(5): 19-23, 35.
    [17] Li Yaqiang. Effect of atmosphere conditions on gas-solid reaction decarburization of iron-carbon alloy ribbons[D]. Tangshan: North China University of Science and Technology, 2017. (李亚强. 气氛条件对铁碳合金薄带气—固反应脱碳的影响[D]. 唐山:华北理工大学, 2017.

    Li Yaqiang. Effect of atmosphere conditions on gas-solid reaction decarburization of iron-carbon alloy ribbons[D]. Tangshan: North China University of Science and Technology, 2017.
    [18] Meng Fanjun, Ai Liqun, Hong Lukuo, et al. Experimental study on decarburization of Fe-C-Mn ribbons in Ar-H2O-H2 atmosphere[J]. Iron Steel Vanadium Titanium, 2021,42(5):132-137. (孟凡峻, 艾立群, 洪陆阔, 等. Ar-H2O-H2气氛下Fe-C-Mn薄带脱碳试验研究[J]. 钢铁钒钛, 2021,42(5):132-137.

    Meng Fanjun, Ai Liqun, Hong Lukuo, et al. Experimental study on decarburization of Fe-C-Mn ribbons in Ar-H2O-H2 atmosphere[J]. Iron Steel Vanadium Titanium, 2021, 42(5): 132-137.
    [19] Sun Caijiao, Ai Liqun, Hong Lukuo, et al. Study on solid state steelmaking from thin cast iron sheets through decarburization in H2O-H2[J]. Ironmaking & Steelmaking, 2020,47(9):1015-1021.
    [20] Král L, Million B, Čermák J. Diffusion of carbon and manganese in Fe-C-Mn[C]//Defect and Diffusion Forum. Trans Tech Publications Ltd, 2007, 263: 153-158.
  • 加载中
图(9)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  16
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-17
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回