留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒掺杂钴铁水滑石的制备及其析氧性能研究

曾泽华 张东彬 尹翔鹭 代宇 雍玲玲 辛亚男 滕艾均

曾泽华, 张东彬, 尹翔鹭, 代宇, 雍玲玲, 辛亚男, 滕艾均. 钒掺杂钴铁水滑石的制备及其析氧性能研究[J]. 钢铁钒钛, 2024, 45(6): 100-107. doi: 10.7513/j.issn.1004-7638.2024.06.014
引用本文: 曾泽华, 张东彬, 尹翔鹭, 代宇, 雍玲玲, 辛亚男, 滕艾均. 钒掺杂钴铁水滑石的制备及其析氧性能研究[J]. 钢铁钒钛, 2024, 45(6): 100-107. doi: 10.7513/j.issn.1004-7638.2024.06.014
Zeng Zehua, Zhang Dongbin, Yin Xianglu, Dai Yu, Yong Lingling, Xin Yanan, Teng Aijun. Research on preparation and OER properties of vanadium doped cobalt iron layered double hydroxide[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 100-107. doi: 10.7513/j.issn.1004-7638.2024.06.014
Citation: Zeng Zehua, Zhang Dongbin, Yin Xianglu, Dai Yu, Yong Lingling, Xin Yanan, Teng Aijun. Research on preparation and OER properties of vanadium doped cobalt iron layered double hydroxide[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 100-107. doi: 10.7513/j.issn.1004-7638.2024.06.014

钒掺杂钴铁水滑石的制备及其析氧性能研究

doi: 10.7513/j.issn.1004-7638.2024.06.014
基金项目: 国家重点研发课题“储能电池用钒基正极材料及高浓度全钒电解液制备技术”(2023YFC2908305);国家重点研发课题“钒铬中间体可控还原短程制备高附加值产品技术”(2022YFC3901004)。
详细信息
    作者简介:

    曾泽华,1994年出生,女,汉族,湖北仙桃人,硕士研究生,工程师,研究方向:纳米功能材料的制备及应用研究,E-mail:13971256774@163.com

    通讯作者:

    张东彬,1990年出生,男,汉族,福建东山人,博士研究生,工程师,研究方向:新型储能器件关键技术开发与研究, E-mail:dongbin10010619@163.com

  • 中图分类号: TF841.3

Research on preparation and OER properties of vanadium doped cobalt iron layered double hydroxide

  • 摘要: 开发环境友好且毒性相对较低的析氧反应(OER)电催化剂是目前水分解的最大困难之一。采用电沉积的方法在泡沫镍(NF)上原位生长了钴铁层状双氢氧化物(CoFe LDH)和钒掺杂的钴铁层状双氢氧化物(V-CoFe LDH)纳米片,并将其作为OER催化剂以探究其析氧性能。研究结果表明,在碱性介质中,当电流密度为100 mA·cm−2时,CoFe LDH和V-CoFe LDH的过电位分别为396 mV和356 mV,CoFe LDH和V-CoFe LDH分别具有224 mV·dec−1和210 mV·dec−1的Tafel斜率。此外,相比于CoFe LDH,V-CoFe LDH电催化剂具有大的电化学比表面积和优异的电解液润湿性。这些结果均表明V的引入有助于增强材料的OER性能。结合密度泛函理论计算和试验结果证明,V的掺杂不仅优化了材料的电子结构,增强了导电性,同样降低了吸附能,增强了催化剂与电解液的接触。
  • 图  1  CoFe LDH 和 V- CoFe LDH 的结构表征

    (a)XRD谱;(b) FT-IR谱

    Figure  1.  Structural characterization of CoFe LDH and V-CoFe LDH

    图  2  不同试样的微观形貌表征

    (a)(b)NF的SEM形貌;(c)(d) NF负载CoFe LDH的SEM形貌;(e)(f) NF负载V-CoFe LDH的SEM形貌;(g) CoFe LDH的EDS分析;(h) V-CoFe LDH的EDS分析

    Figure  2.  Micro-morphology characterization of different samples

    图  3  CoFe LDH和V-CoFe LDH的电催化性能测试

    (a)LSV 极化曲线,塔菲尔斜率;(b)(c)不同扫速下的CV 极化曲线;(d)ECSA处理;(e)电化学阻抗测试;(f)在恒电流 100 mA·cm−2下反应7.5 h 的电位-时间曲线

    Figure  3.  Electrocatalytic properties of CoFe LDH and V-CoFe LDH

    图  4  接触角测量

    Figure  4.  Contact angle measurement

      (a)KOH电解液与NF之间的接触角;(b)~(d)KOH电解液与NF负载CoFe LDH之间的接触角测试过程;(e)(f)KOH电解液与NF负载V-CoFe LDH的接触角测试过程    

    图  5  CoFe LDH和V-CoFe LDH的DFT理论计算

    (a)CoFe LDH的晶体结构模型;(b)V-CoFe LDH的晶体结构模型;(c)CoFe LDH的DOS图;(d)V-CoFe LDH的DOS图(e)CoFe LDH吸附OH的晶胞模型;(f)V-CoFe LDH吸附OH的晶胞模型

    Figure  5.  DFT calculation of CoFe LDH and V-CoFe LDH

    表  1  吸附能的DFT计算结果

    Table  1.   DFT calculation results of adsorption energy eV

    $E_{({\mathrm{Bulk-OH}}^-)} $ $E_{({\mathrm{Bulk}})} $ $E_{{\mathrm{OH}}^-} $ $E_{{\mathrm{ads}}} $
    CoFe LDH 35140.4510 34685.1275 451.0471 4.2764
    V-CoFe LDH 36853.1392 34685.1275 451.0471 7.7834
    下载: 导出CSV
  • [1] Wang Wei, Xu Xiaomin, Zhou Wei , et al. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting[J]. Advanced Science, 2017,4(4):1600371. doi: 10.1002/advs.201600371
    [2] Dincer I. Green methods for hydrogen production[J]. International Journal of Hydrogen Energy, 2012,37(2):1954-1971. doi: 10.1016/j.ijhydene.2011.03.173
    [3] Lei Wanying, Zhou Tong, Pang Xin, et al. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects[J]. Journal of Materials Science & Technology, 2022,114:143-164.
    [4] Hu Yiming, Wang Zhaolong, Liu Wenjun, et al. A novel cobalt-iron-vanadium layered double hydroxide nanosheets arrays toward the superior water oxidation performance[J]. ACS Sustainable Chemistry & Engineering, 2019,7(19):16828-16834.
    [5] Reier Tobias, Mehtap Oezaslan, Peter Strasser. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials[J]. ACS Catalysis, 2012,2:1765-1772. doi: 10.1021/cs3003098
    [6] Youngmin Lee, Jin Suntivich, Kevin J May, et al. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions[J]. Journal of Physical Chemistry Letters, 2012,3:399-404. doi: 10.1021/jz2016507
    [7] Antolini Ermete. Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells[J]. ACS Catalysis, 2014,4(5):1426-1440. doi: 10.1021/cs4011875
    [8] Kötz R, Lewerenz H J, Stucki S, et al. XPS studies of oxygen evolution on Ru and RuO2 anodes[J]. Journal of the Electrochemical Society, 1983,130:825-829. doi: 10.1149/1.2119829
    [9] Wang Shenggao, Wang Tao, Wang Xujie, et al. Intercalation and elimination of carbonate ions of NiCo layered double hydroxide for enhanced oxygen evolution catalysis[J]. International Journal of Hydrogen Energy, 2020,23(45):12629-12640.
    [10] Isabela C Man, Su Haiyan, Federico Calle Vallejo, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. Chem Cat Chem, 2011, 3(7): 1159-1165.
    [11] Long Xia, Li Jinkai, Xiao Shuang, et al. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction[J]. Angewandte Chemie(International Ed), 2014, 53(29): 7584-7588.
    [12] Long Xia, Xiao Shuang, Wang Zilong, et al. Co intake mediated formation of ultrathin nanosheet of transition metal LDH-an advanced electrocatalysts for oxygen evolution reaction[J]. Chem Commun, 2015,1(6):1120-1123.
    [13] Ding Yangyang, Du Xiaoqiang, Zhang Xiaoshuang, et al. Controllable synthesis of CoFeMo layered double hydroxide nanoarrays for promoting oxygen evolution reaction[J]. Dalton Transactions, 2020,49:15417-15424. doi: 10.1039/D0DT03182H
    [14] Gong Ming, Li Yanguang, Wang Hailiang, et al. An advanced NieFe layered double hydroxide electrocatalyst for water oxidation[J]. Journal of the American Chemical Society, 2013,135(23):8452-8455. doi: 10.1021/ja4027715
    [15] Yu Xiaowen, Zhang Miao, Yuan Wenjing, et al. High-performance three-dimensional Ni-Fe layered double hydroxide/graphene electrode for water oxidation[J]. Journal of Materials Chemistry A, 2015,3(13):6921-6928. doi: 10.1039/C5TA01034A
    [16] Li Kaiyue, Guo Dong, Kang Jianyu, et al. Hierarchical hollow spheres assembled with ultrathin CoMn double hydroxide nanosheets as trifunctional electrocatalyst for overall water splitting and Zn air battery[J]. ACS Sustainable Chemistry & Engineering, 2018,6(11):14641-14651.
    [17] Yang Yang, Dang Lianna, Shearer Melinda J, et al. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction[J]. Advanced Energy Materials, 2018,8(15):1703189. doi: 10.1002/aenm.201703189
    [18] Feng Yihan, Li Zichuang, Li Shanlin, et al. One stone two birds: Vanadium doping as dual roles in self-reduced Pt clus-ters and accelerated water splitting[J]. Journal of Energy Chemistry, 2022,66:493-501. doi: 10.1016/j.jechem.2021.08.061
    [19] Wang Shenggao, Wang Tao, Wang Xujie, et al. Intercalation and elimination of carbonate ions of NiCo layered double hydroxide for enhanced oxygen evolution catalysis[J]. International Journal of Hydrogen Energy, 2020,45(23):12629-12640. doi: 10.1016/j.ijhydene.2020.02.212
    [20] Wang Bo, Gareth R Williams, Chang Zheng, et al. Hierarchical NiAl layered double hydroxide/multiwalled carbon nanotube/nickel foam electrodes with excellent pseudocapacitive properties[J]. ACS Applied Materials & Interfaces, 2014,6:16304-16311.
    [21] Wang Yuhang, Chen Long, Yu Xiaomin, et al. Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets[J]. Advanced Energy Materials, 2016,7:1601390.
    [22] Tian Yang, Bi Yongming, Qin Bangchang, et al. Density functional theory investigation of oxygen evolution reaction on the NiFe-LDHs (100) surface[J]. Joural of Advances in Physical Chemistry, 2017,6(2):75-83. (田阳, 毕永民, 秦邦昌, 等. NiFe-LDHs催化氧气析出反应的密度泛函理论研究[J]. 物理化学进展, 2017,6(2):75-83. doi: 10.12677/JAPC.2017.62010

    Tian Yang, Bi Yongming, Qin Bangchang, et al. Density functional theory investigation of oxygen evolution reaction on the NiFe-LDHs (100) surface[J]. Joural of Advances in Physical Chemistry, 2017, 6(2): 75-83. doi: 10.12677/JAPC.2017.62010
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  12
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回