留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预置TiCuZnSn的钛表面搅拌摩擦改性层组织与摩擦磨损性能

党杰 李杰 周鹏 史洪源 惠媛媛

党杰, 李杰, 周鹏, 史洪源, 惠媛媛. 预置TiCuZnSn的钛表面搅拌摩擦改性层组织与摩擦磨损性能[J]. 钢铁钒钛, 2024, 45(6): 94-99. doi: 10.7513/j.issn.1004-7638.2024.06.013
引用本文: 党杰, 李杰, 周鹏, 史洪源, 惠媛媛. 预置TiCuZnSn的钛表面搅拌摩擦改性层组织与摩擦磨损性能[J]. 钢铁钒钛, 2024, 45(6): 94-99. doi: 10.7513/j.issn.1004-7638.2024.06.013
Dang Jie, Li Jie, Zhou Peng, Shi Hongyuan, Hui Yuanyuan. Microstructure and friction and wear properties of titanium modified layer of preset TiCuZnSn by FSP[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 94-99. doi: 10.7513/j.issn.1004-7638.2024.06.013
Citation: Dang Jie, Li Jie, Zhou Peng, Shi Hongyuan, Hui Yuanyuan. Microstructure and friction and wear properties of titanium modified layer of preset TiCuZnSn by FSP[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 94-99. doi: 10.7513/j.issn.1004-7638.2024.06.013

预置TiCuZnSn的钛表面搅拌摩擦改性层组织与摩擦磨损性能

doi: 10.7513/j.issn.1004-7638.2024.06.013
基金项目: 陕西高校青年创新团队项目(2023-98);陕西省教育厅科研计划项目(23JP074,23JP075);西安航空职业技术学院自然科学项目(21XHZK-02)。
详细信息
    作者简介:

    党杰,1979年出生,男,陕西渭南人,硕士,教授,主要从事材料成型方法研究,E-mail:dangjie620@163.com

    通讯作者:

    李杰,1988年出生,男,甘肃定西人,博士研究生,副教授,主要从事钛表面改性、异种金属焊接研究,E-mail:892989714@qq.com

  • 中图分类号: TF823,TG442

Microstructure and friction and wear properties of titanium modified layer of preset TiCuZnSn by FSP

  • 摘要: 为了获得表面综合性能良好的生物医用钛金属,在TA2纯钛表面预置等物质的量的Ti、Cu、Zn、Sn金属粉末,采用搅拌摩擦加工技术对纯钛进行表面改性。通过扫描电镜、能谱仪、电子背散射衍射对钛表面改性层微观组织进行观察和分析,利用纳米压痕、摩擦磨损试验测试改性层机械性能。结果表明:搅拌摩擦加工技术可获得内部无缺陷、与TA2纯钛基体结合良好的表面改性TiCuZnSn合金层,改性层最大深度约2.5 mm;合金元素Cu、Zn、Sn提高了改性层的杨氏模量和硬度,特别是对改性层硬度的提升效果更显著;TiCuZnSn改性层对TA2钛摩擦系数的影响不显著,但改性层的平均磨损率会大幅降低,与TA2钛相比,TiCuZnSn表面改性层平均磨损率降低约28.95%。
  • 图  1  钛FSP表面改性示意(单位:mm)

    Figure  1.  Schematic illustration of titanium surface modification by FSP

    图  2  钛改性层宏观形貌

    Figure  2.  Macro-morphology of titanium modified layer

    图  3  钛表面改性层面扫描

    (a) 背散射电子图像;(b) Ti元素分布;(c) Cu元素分布;(d) Zn元素分布;(e) Sn元素分布;(f) 合金元素含量

    Figure  3.  Map-scanning of titanium modified layer

    图  4  TiCuZnSn合金层不同区域微观组织

    (a) 图2中区域1;(b) 图2中区域2;(c) 图2中区域3;(d) 图2中区域4

    Figure  4.  Microstructure of different regions of TiCuZnSn alloy layer

    图  5  钛表面改性层不同区域晶粒

    (a) 改性层宏观形貌;(b) 搅拌区;(c) 过渡区;(d) 热影响区;(e) 钛母材

    Figure  5.  The grain in different zones of titanium modified layer

    图  6  改性层不同微区纳米压痕测试结果

    (a) 改性层背散射电子图像;(b) 位移-载荷曲线

    Figure  6.  Nano-indentation test results of different micro areas of modified layer

    图  7  不同试样摩擦时间-摩擦因数曲线

    Figure  7.  Friction time-coefficient curves of the different samples

    图  8  摩擦磨损试样表面形貌

    (a) 纯钛低倍磨损形貌;(b) 纯钛高倍磨损形貌;(c) 改性层低倍磨损形貌;(d) 改性层高倍磨损形貌

    Figure  8.  Surface morphology of friction and wear samples

    图  9  摩擦磨损试样面扫描

    (a) 二次电子图像;(b) Cu元素分布;(c) Zn元素分布;(d) Sn元素分布

    Figure  9.  Map-scanning of friction and wear area of samples

    表  1  改性层不同微区纳米压痕测试数值

    Table  1.   Nano-indentation test values of different micro-regions of modified layer

    位置压痕最大深度hmax/nm简约杨氏模量Er/GPa纳米压痕硬度H/GPa
    J2545.7965272.95904.4357
    K2981.7511242.82433.1678
    下载: 导出CSV
  • [1] Yi Peiyun, Peng Linfa, Huang Jiaqiang, et al. Multilayered TiAlN films on Ti6Al4V alloy for biomedical applications by closed field unbalanced magnetron sputter ion plating process[J]. Materials Science and Engineering: C, 2016,59:669-676. doi: 10.1016/j.msec.2015.10.071
    [2] Finke B, Polak M, Hempel F, et al. Antimicrobial potential of copper‐containing titanium surfaces generated by ion implantation and dual high power impulse magnetron sputtering[J]. Advanced Engineering Materials, 2012,14(5):224-230.
    [3] Xu Ying, Wang Huanhuan, He Shiyu, et al. Preparation and properties of TiO2 nanotubes[J]. Iron Steel Vanadium Titanium, 2018,39(4):52-57. (许莹, 王欢欢, 何世宇, 等. TiO2纳米管的制备及其性能研究[J]. 钢铁钒钛, 2018,39(4):52-57.

    Xu Ying, Wang Huanhuan, He Shiyu, et al. Preparation and properties of TiO2 nanotubes[J]. Iron Steel Vanadium Titanium, 2018, 39(4): 52-57.
    [4] Gao Ang, Hang Ruiqiang, Bai Long, et al. Electrochemical surface engineering of titanium-based alloys for biomedical application[J]. Electrochimica Acta, 2018,271:699-718. doi: 10.1016/j.electacta.2018.03.180
    [5] An Zhongsheng, Chen Yan, Zhao Wei. Report on China titanium industry in 2021[J]. Iron Steel Vanadium Titanium, 2022,43(4):1-9. (安仲生, 陈岩, 赵巍. 2021年中国钛工业发展报告[J]. 钢铁钒钛, 2022,43(4):1-9.

    An Zhongsheng, Chen Yan, Zhao Wei. Report on China titanium industry in 2021[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 1-9.
    [6] Cheng Kaiyuan, Pagan Nicholas, Bijukumar Divya, et al. Carburized titanium as a solid lubricant on hip implants: Corrosion, tribocorrosion and biocompatibility aspects[J]. Thin Solid Films, 2018,665:148-158. doi: 10.1016/j.tsf.2018.08.048
    [7] Xue Tong, Attarilar Shokouh, Liu Shifeng, et al. Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties: Thematic review[J]. Frontiers in Bioengineering and Biotechnology, 2020,8:1-19. doi: 10.3389/fbioe.2020.00001
    [8] Li Jie, Zhou Peng, Attarilar Shokouh, et al. Innovative surface modification procedures to achieve micro/nano-graded Ti-based biomedical alloys and implants[J]. Coatings, 2021,11(6):647. doi: 10.3390/coatings11060647
    [9] Li Bo, Shen Yifu. Recent research progress in friction stir welding and friction stir processing of titanium alloys[J]. Welding & Joining, 2016, 520(10): 22-27, 69-70. (李博, 沈以赴. 钛合金搅拌摩擦焊与搅拌摩擦加工研究进展[J]. 焊接, 2016, 520(10): 22-27, 69-70.

    Li Bo, Shen Yifu. Recent research progress in friction stir welding and friction stir processing of titanium alloys[J]. Welding & Joining, 2016, 520(10): 22-27, 69-70.
    [10] Zykova Anna P, Tarasov Sergei Yu, Chumaevskiy Andrey V, et al. A review of friction stir processing of structural metallic materials: Process, properties, and methods[J]. Metals, 2020, 10(6): 772.
    [11] Vikram Kumar S Jain1, James Varghese, S Muthukumaran. Effect of first and second passes on microstructure and wear properties of titanium dioxide-reinforced aluminum surface composite via friction stir processing[J]. Arabian Journal for Science and Engineering, 2018,44(2):949-957.
    [12] Zhang Erlin, Fu Shan, Wang Ruoxian, et al. Role of Cu element in biomedical metal alloy design[J]. Rare Metals, 2019, 38(6): 476-494.
    [13] Fang Yingjing, Attarilar Shokouh, Yang Zhi, et al. Toward bactericidal enhancement of additively manufactured titanium implants[J]. Coatings, 2021,11(6):668. doi: 10.3390/coatings11060668
    [14] Zhang Xiangyu, Wang Huizhen, Li Jiangfang, et al. Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium[J]. Ceramics International, 2016,42(15):17095-17100. doi: 10.1016/j.ceramint.2016.07.220
    [15] Hsu Hsuehchuan, Wu Shihching, Hong Yusheng, et al. Mechanical properties and deformation behavior of as-cast Ti-Sn alloys[J]. Journal of Alloys and Compounds, 2009,479(1-2):390-394. doi: 10.1016/j.jallcom.2008.12.064
    [16] Singh, Abhishek Kumar, Kaushik Lalit, et al. Evolution of microstructure and texture in the stir zone of commercially pure titanium during friction stir processing[J]. International Journal of Plasticity, 2022,150:103184. doi: 10.1016/j.ijplas.2021.103184
    [17] Wang Liqiang, Xie Lechun, Lü Yuting, et al. Microstructure evolution and superelastic behavior in Ti-35Nb-2Ta-3Zr alloy processed by friction stir processing[J]. Acta Materialia, 2017,131:499-510. doi: 10.1016/j.actamat.2017.03.079
    [18] Guo Yongyi, Jiang Luyao, Huang Weijiu, et al. Effect of low rotation speed on tribological properties of friction stir processed commercial pure Ti[J]. Surface Technology, 2018,47(9):101-108. (郭勇义, 蒋璐瑶, 黄伟九, 等. 慢速搅拌摩擦加工对工业纯钛摩擦磨损性能的影响[J]. 表面技术, 2018,47(9):101-108.

    Guo Yongyi, Jiang Luyao, Huang Weijiu, et al. Effect of low rotation speed on tribological properties of friction stir processed commercial pure Ti[J]. Surface Technology, 2018, 47(9): 101-108.
    [19] Farnoush H, Bastami A B, Sadeghi A, et al. Tribological and corrosion behavior of friction stir processed Ti-CaP nanocomposites in simulated body fluid solution[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013,20:90-97. doi: 10.1016/j.jmbbm.2012.12.001
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  14
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-08
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回