中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预置TiCuZnSn的钛表面搅拌摩擦改性层组织与摩擦磨损性能

党杰 李杰 周鹏 史洪源 惠媛媛

党杰, 李杰, 周鹏, 史洪源, 惠媛媛. 预置TiCuZnSn的钛表面搅拌摩擦改性层组织与摩擦磨损性能[J]. 钢铁钒钛, 2024, 45(6): 94-99. doi: 10.7513/j.issn.1004-7638.2024.06.013
引用本文: 党杰, 李杰, 周鹏, 史洪源, 惠媛媛. 预置TiCuZnSn的钛表面搅拌摩擦改性层组织与摩擦磨损性能[J]. 钢铁钒钛, 2024, 45(6): 94-99. doi: 10.7513/j.issn.1004-7638.2024.06.013
Dang Jie, Li Jie, Zhou Peng, Shi Hongyuan, Hui Yuanyuan. Microstructure and friction and wear properties of titanium modified layer of preset TiCuZnSn by FSP[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 94-99. doi: 10.7513/j.issn.1004-7638.2024.06.013
Citation: Dang Jie, Li Jie, Zhou Peng, Shi Hongyuan, Hui Yuanyuan. Microstructure and friction and wear properties of titanium modified layer of preset TiCuZnSn by FSP[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 94-99. doi: 10.7513/j.issn.1004-7638.2024.06.013

预置TiCuZnSn的钛表面搅拌摩擦改性层组织与摩擦磨损性能

doi: 10.7513/j.issn.1004-7638.2024.06.013
基金项目: 陕西高校青年创新团队项目(2023-98);陕西省教育厅科研计划项目(23JP074,23JP075);西安航空职业技术学院自然科学项目(21XHZK-02)。
详细信息
    作者简介:

    党杰,1979年出生,男,陕西渭南人,硕士,教授,主要从事材料成型方法研究,E-mail:dangjie620@163.com

    通讯作者:

    李杰,1988年出生,男,甘肃定西人,博士研究生,副教授,主要从事钛表面改性、异种金属焊接研究,E-mail:892989714@qq.com

  • 中图分类号: TF823,TG442

Microstructure and friction and wear properties of titanium modified layer of preset TiCuZnSn by FSP

  • 摘要: 为了获得表面综合性能良好的生物医用钛金属,在TA2纯钛表面预置等物质的量的Ti、Cu、Zn、Sn金属粉末,采用搅拌摩擦加工技术对纯钛进行表面改性。通过扫描电镜、能谱仪、电子背散射衍射对钛表面改性层微观组织进行观察和分析,利用纳米压痕、摩擦磨损试验测试改性层机械性能。结果表明:搅拌摩擦加工技术可获得内部无缺陷、与TA2纯钛基体结合良好的表面改性TiCuZnSn合金层,改性层最大深度约2.5 mm;合金元素Cu、Zn、Sn提高了改性层的杨氏模量和硬度,特别是对改性层硬度的提升效果更显著;TiCuZnSn改性层对TA2钛摩擦系数的影响不显著,但改性层的平均磨损率会大幅降低,与TA2钛相比,TiCuZnSn表面改性层平均磨损率降低约28.95%。
  • 图  1  钛FSP表面改性示意(单位:mm)

    Figure  1.  Schematic illustration of titanium surface modification by FSP

    图  2  钛改性层宏观形貌

    Figure  2.  Macro-morphology of titanium modified layer

    图  3  钛表面改性层面扫描

    (a) 背散射电子图像;(b) Ti元素分布;(c) Cu元素分布;(d) Zn元素分布;(e) Sn元素分布;(f) 合金元素含量

    Figure  3.  Map-scanning of titanium modified layer

    图  4  TiCuZnSn合金层不同区域微观组织

    (a) 图2中区域1;(b) 图2中区域2;(c) 图2中区域3;(d) 图2中区域4

    Figure  4.  Microstructure of different regions of TiCuZnSn alloy layer

    图  5  钛表面改性层不同区域晶粒

    (a) 改性层宏观形貌;(b) 搅拌区;(c) 过渡区;(d) 热影响区;(e) 钛母材

    Figure  5.  The grain in different zones of titanium modified layer

    图  6  改性层不同微区纳米压痕测试结果

    (a) 改性层背散射电子图像;(b) 位移-载荷曲线

    Figure  6.  Nano-indentation test results of different micro areas of modified layer

    图  7  不同试样摩擦时间-摩擦因数曲线

    Figure  7.  Friction time-coefficient curves of the different samples

    图  8  摩擦磨损试样表面形貌

    (a) 纯钛低倍磨损形貌;(b) 纯钛高倍磨损形貌;(c) 改性层低倍磨损形貌;(d) 改性层高倍磨损形貌

    Figure  8.  Surface morphology of friction and wear samples

    图  9  摩擦磨损试样面扫描

    (a) 二次电子图像;(b) Cu元素分布;(c) Zn元素分布;(d) Sn元素分布

    Figure  9.  Map-scanning of friction and wear area of samples

    表  1  改性层不同微区纳米压痕测试数值

    Table  1.   Nano-indentation test values of different micro-regions of modified layer

    位置压痕最大深度hmax/nm简约杨氏模量Er/GPa纳米压痕硬度H/GPa
    J2545.7965272.95904.4357
    K2981.7511242.82433.1678
    下载: 导出CSV
  • [1] Yi Peiyun, Peng Linfa, Huang Jiaqiang, et al. Multilayered TiAlN films on Ti6Al4V alloy for biomedical applications by closed field unbalanced magnetron sputter ion plating process[J]. Materials Science and Engineering: C, 2016,59:669-676. doi: 10.1016/j.msec.2015.10.071
    [2] Finke B, Polak M, Hempel F, et al. Antimicrobial potential of copper‐containing titanium surfaces generated by ion implantation and dual high power impulse magnetron sputtering[J]. Advanced Engineering Materials, 2012,14(5):224-230.
    [3] Xu Ying, Wang Huanhuan, He Shiyu, et al. Preparation and properties of TiO2 nanotubes[J]. Iron Steel Vanadium Titanium, 2018,39(4):52-57. (许莹, 王欢欢, 何世宇, 等. TiO2纳米管的制备及其性能研究[J]. 钢铁钒钛, 2018,39(4):52-57.

    Xu Ying, Wang Huanhuan, He Shiyu, et al. Preparation and properties of TiO2 nanotubes[J]. Iron Steel Vanadium Titanium, 2018, 39(4): 52-57.
    [4] Gao Ang, Hang Ruiqiang, Bai Long, et al. Electrochemical surface engineering of titanium-based alloys for biomedical application[J]. Electrochimica Acta, 2018,271:699-718. doi: 10.1016/j.electacta.2018.03.180
    [5] An Zhongsheng, Chen Yan, Zhao Wei. Report on China titanium industry in 2021[J]. Iron Steel Vanadium Titanium, 2022,43(4):1-9. (安仲生, 陈岩, 赵巍. 2021年中国钛工业发展报告[J]. 钢铁钒钛, 2022,43(4):1-9.

    An Zhongsheng, Chen Yan, Zhao Wei. Report on China titanium industry in 2021[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 1-9.
    [6] Cheng Kaiyuan, Pagan Nicholas, Bijukumar Divya, et al. Carburized titanium as a solid lubricant on hip implants: Corrosion, tribocorrosion and biocompatibility aspects[J]. Thin Solid Films, 2018,665:148-158. doi: 10.1016/j.tsf.2018.08.048
    [7] Xue Tong, Attarilar Shokouh, Liu Shifeng, et al. Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties: Thematic review[J]. Frontiers in Bioengineering and Biotechnology, 2020,8:1-19. doi: 10.3389/fbioe.2020.00001
    [8] Li Jie, Zhou Peng, Attarilar Shokouh, et al. Innovative surface modification procedures to achieve micro/nano-graded Ti-based biomedical alloys and implants[J]. Coatings, 2021,11(6):647. doi: 10.3390/coatings11060647
    [9] Li Bo, Shen Yifu. Recent research progress in friction stir welding and friction stir processing of titanium alloys[J]. Welding & Joining, 2016, 520(10): 22-27, 69-70. (李博, 沈以赴. 钛合金搅拌摩擦焊与搅拌摩擦加工研究进展[J]. 焊接, 2016, 520(10): 22-27, 69-70.

    Li Bo, Shen Yifu. Recent research progress in friction stir welding and friction stir processing of titanium alloys[J]. Welding & Joining, 2016, 520(10): 22-27, 69-70.
    [10] Zykova Anna P, Tarasov Sergei Yu, Chumaevskiy Andrey V, et al. A review of friction stir processing of structural metallic materials: Process, properties, and methods[J]. Metals, 2020, 10(6): 772.
    [11] Vikram Kumar S Jain1, James Varghese, S Muthukumaran. Effect of first and second passes on microstructure and wear properties of titanium dioxide-reinforced aluminum surface composite via friction stir processing[J]. Arabian Journal for Science and Engineering, 2018,44(2):949-957.
    [12] Zhang Erlin, Fu Shan, Wang Ruoxian, et al. Role of Cu element in biomedical metal alloy design[J]. Rare Metals, 2019, 38(6): 476-494.
    [13] Fang Yingjing, Attarilar Shokouh, Yang Zhi, et al. Toward bactericidal enhancement of additively manufactured titanium implants[J]. Coatings, 2021,11(6):668. doi: 10.3390/coatings11060668
    [14] Zhang Xiangyu, Wang Huizhen, Li Jiangfang, et al. Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium[J]. Ceramics International, 2016,42(15):17095-17100. doi: 10.1016/j.ceramint.2016.07.220
    [15] Hsu Hsuehchuan, Wu Shihching, Hong Yusheng, et al. Mechanical properties and deformation behavior of as-cast Ti-Sn alloys[J]. Journal of Alloys and Compounds, 2009,479(1-2):390-394. doi: 10.1016/j.jallcom.2008.12.064
    [16] Singh, Abhishek Kumar, Kaushik Lalit, et al. Evolution of microstructure and texture in the stir zone of commercially pure titanium during friction stir processing[J]. International Journal of Plasticity, 2022,150:103184. doi: 10.1016/j.ijplas.2021.103184
    [17] Wang Liqiang, Xie Lechun, Lü Yuting, et al. Microstructure evolution and superelastic behavior in Ti-35Nb-2Ta-3Zr alloy processed by friction stir processing[J]. Acta Materialia, 2017,131:499-510. doi: 10.1016/j.actamat.2017.03.079
    [18] Guo Yongyi, Jiang Luyao, Huang Weijiu, et al. Effect of low rotation speed on tribological properties of friction stir processed commercial pure Ti[J]. Surface Technology, 2018,47(9):101-108. (郭勇义, 蒋璐瑶, 黄伟九, 等. 慢速搅拌摩擦加工对工业纯钛摩擦磨损性能的影响[J]. 表面技术, 2018,47(9):101-108.

    Guo Yongyi, Jiang Luyao, Huang Weijiu, et al. Effect of low rotation speed on tribological properties of friction stir processed commercial pure Ti[J]. Surface Technology, 2018, 47(9): 101-108.
    [19] Farnoush H, Bastami A B, Sadeghi A, et al. Tribological and corrosion behavior of friction stir processed Ti-CaP nanocomposites in simulated body fluid solution[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013,20:90-97. doi: 10.1016/j.jmbbm.2012.12.001
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  26
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-08
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回