Microstructure and friction and wear properties of titanium modified layer of preset TiCuZnSn by FSP
-
摘要: 为了获得表面综合性能良好的生物医用钛金属,在TA2纯钛表面预置等物质的量的Ti、Cu、Zn、Sn金属粉末,采用搅拌摩擦加工技术对纯钛进行表面改性。通过扫描电镜、能谱仪、电子背散射衍射对钛表面改性层微观组织进行观察和分析,利用纳米压痕、摩擦磨损试验测试改性层机械性能。结果表明:搅拌摩擦加工技术可获得内部无缺陷、与TA2纯钛基体结合良好的表面改性TiCuZnSn合金层,改性层最大深度约2.5 mm;合金元素Cu、Zn、Sn提高了改性层的杨氏模量和硬度,特别是对改性层硬度的提升效果更显著;TiCuZnSn改性层对TA2钛摩擦系数的影响不显著,但改性层的平均磨损率会大幅降低,与TA2钛相比,TiCuZnSn表面改性层平均磨损率降低约28.95%。
-
关键词:
- 钛 /
- 表面改性 /
- TiCuZnSn合金层 /
- 搅拌摩擦加工 /
- 摩擦磨损
Abstract: In order to obtain the biomedical titanium metal with good surface comprehensive properties, the equimolar Ti, Cu, Zn and Sn metal powders were preset on the surface of TA2 pure titanium, and the surface of pure titanium was modified by friction stir processing (FSP). The microstructure of the modified layer was observed and analyzed by scanning electron microscopy, energy dispersive spectrometer and electron back scattering diffraction, and the mechanical properties of the modified layer were tested by nano-indentation and friction and wear tests. The results show that the TiCuZnSn modified layer with no internal defects and good combination with titanium matrix could be obtained by FSP, and the maximum depth of the modified layer is about 2.5 mm. Alloying elements Cu, Zn and Sn could improve the Young’s modulus and hardness of the modified layer, especially the hardness of the modified layer. The TiCuZnSn modified layer has no significant effect on the friction coefficient of TA2 titanium, but the average wear rate of the modified layer is significantly reduced. Compared with TA2 titanium, the average wear rate of the surface modified layer is reduced by about 28.95%.-
Key words:
- titanium /
- surface modification /
- TiCuZnSn alloy layer /
- friction stir processing /
- friction and wear
-
表 1 改性层不同微区纳米压痕测试数值
Table 1. Nano-indentation test values of different micro-regions of modified layer
位置 压痕最大深度hmax/nm 简约杨氏模量Er/GPa 纳米压痕硬度H/GPa J 2545.7965 272.9590 4.4357 K 2981.7511 242.8243 3.1678 -
[1] Yi Peiyun, Peng Linfa, Huang Jiaqiang, et al. Multilayered TiAlN films on Ti6Al4V alloy for biomedical applications by closed field unbalanced magnetron sputter ion plating process[J]. Materials Science and Engineering: C, 2016,59:669-676. doi: 10.1016/j.msec.2015.10.071 [2] Finke B, Polak M, Hempel F, et al. Antimicrobial potential of copper‐containing titanium surfaces generated by ion implantation and dual high power impulse magnetron sputtering[J]. Advanced Engineering Materials, 2012,14(5):224-230. [3] Xu Ying, Wang Huanhuan, He Shiyu, et al. Preparation and properties of TiO2 nanotubes[J]. Iron Steel Vanadium Titanium, 2018,39(4):52-57. (许莹, 王欢欢, 何世宇, 等. TiO2纳米管的制备及其性能研究[J]. 钢铁钒钛, 2018,39(4):52-57.Xu Ying, Wang Huanhuan, He Shiyu, et al. Preparation and properties of TiO2 nanotubes[J]. Iron Steel Vanadium Titanium, 2018, 39(4): 52-57. [4] Gao Ang, Hang Ruiqiang, Bai Long, et al. Electrochemical surface engineering of titanium-based alloys for biomedical application[J]. Electrochimica Acta, 2018,271:699-718. doi: 10.1016/j.electacta.2018.03.180 [5] An Zhongsheng, Chen Yan, Zhao Wei. Report on China titanium industry in 2021[J]. Iron Steel Vanadium Titanium, 2022,43(4):1-9. (安仲生, 陈岩, 赵巍. 2021年中国钛工业发展报告[J]. 钢铁钒钛, 2022,43(4):1-9.An Zhongsheng, Chen Yan, Zhao Wei. Report on China titanium industry in 2021[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 1-9. [6] Cheng Kaiyuan, Pagan Nicholas, Bijukumar Divya, et al. Carburized titanium as a solid lubricant on hip implants: Corrosion, tribocorrosion and biocompatibility aspects[J]. Thin Solid Films, 2018,665:148-158. doi: 10.1016/j.tsf.2018.08.048 [7] Xue Tong, Attarilar Shokouh, Liu Shifeng, et al. Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties: Thematic review[J]. Frontiers in Bioengineering and Biotechnology, 2020,8:1-19. doi: 10.3389/fbioe.2020.00001 [8] Li Jie, Zhou Peng, Attarilar Shokouh, et al. Innovative surface modification procedures to achieve micro/nano-graded Ti-based biomedical alloys and implants[J]. Coatings, 2021,11(6):647. doi: 10.3390/coatings11060647 [9] Li Bo, Shen Yifu. Recent research progress in friction stir welding and friction stir processing of titanium alloys[J]. Welding & Joining, 2016, 520(10): 22-27, 69-70. (李博, 沈以赴. 钛合金搅拌摩擦焊与搅拌摩擦加工研究进展[J]. 焊接, 2016, 520(10): 22-27, 69-70.Li Bo, Shen Yifu. Recent research progress in friction stir welding and friction stir processing of titanium alloys[J]. Welding & Joining, 2016, 520(10): 22-27, 69-70. [10] Zykova Anna P, Tarasov Sergei Yu, Chumaevskiy Andrey V, et al. A review of friction stir processing of structural metallic materials: Process, properties, and methods[J]. Metals, 2020, 10(6): 772. [11] Vikram Kumar S Jain1, James Varghese, S Muthukumaran. Effect of first and second passes on microstructure and wear properties of titanium dioxide-reinforced aluminum surface composite via friction stir processing[J]. Arabian Journal for Science and Engineering, 2018,44(2):949-957. [12] Zhang Erlin, Fu Shan, Wang Ruoxian, et al. Role of Cu element in biomedical metal alloy design[J]. Rare Metals, 2019, 38(6): 476-494. [13] Fang Yingjing, Attarilar Shokouh, Yang Zhi, et al. Toward bactericidal enhancement of additively manufactured titanium implants[J]. Coatings, 2021,11(6):668. doi: 10.3390/coatings11060668 [14] Zhang Xiangyu, Wang Huizhen, Li Jiangfang, et al. Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium[J]. Ceramics International, 2016,42(15):17095-17100. doi: 10.1016/j.ceramint.2016.07.220 [15] Hsu Hsuehchuan, Wu Shihching, Hong Yusheng, et al. Mechanical properties and deformation behavior of as-cast Ti-Sn alloys[J]. Journal of Alloys and Compounds, 2009,479(1-2):390-394. doi: 10.1016/j.jallcom.2008.12.064 [16] Singh, Abhishek Kumar, Kaushik Lalit, et al. Evolution of microstructure and texture in the stir zone of commercially pure titanium during friction stir processing[J]. International Journal of Plasticity, 2022,150:103184. doi: 10.1016/j.ijplas.2021.103184 [17] Wang Liqiang, Xie Lechun, Lü Yuting, et al. Microstructure evolution and superelastic behavior in Ti-35Nb-2Ta-3Zr alloy processed by friction stir processing[J]. Acta Materialia, 2017,131:499-510. doi: 10.1016/j.actamat.2017.03.079 [18] Guo Yongyi, Jiang Luyao, Huang Weijiu, et al. Effect of low rotation speed on tribological properties of friction stir processed commercial pure Ti[J]. Surface Technology, 2018,47(9):101-108. (郭勇义, 蒋璐瑶, 黄伟九, 等. 慢速搅拌摩擦加工对工业纯钛摩擦磨损性能的影响[J]. 表面技术, 2018,47(9):101-108.Guo Yongyi, Jiang Luyao, Huang Weijiu, et al. Effect of low rotation speed on tribological properties of friction stir processed commercial pure Ti[J]. Surface Technology, 2018, 47(9): 101-108. [19] Farnoush H, Bastami A B, Sadeghi A, et al. Tribological and corrosion behavior of friction stir processed Ti-CaP nanocomposites in simulated body fluid solution[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013,20:90-97. doi: 10.1016/j.jmbbm.2012.12.001