留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

V含量对激光熔覆铁铬合金涂层组织结构及性能的影响

张雪峰 卿光洋 周浩然 翁刘 陈敏 赵海泉 吴博涛 张鑫

张雪峰, 卿光洋, 周浩然, 翁刘, 陈敏, 赵海泉, 吴博涛, 张鑫. V含量对激光熔覆铁铬合金涂层组织结构及性能的影响[J]. 钢铁钒钛, 2024, 45(6): 87-93. doi: 10.7513/j.issn.1004-7638.2024.06.012
引用本文: 张雪峰, 卿光洋, 周浩然, 翁刘, 陈敏, 赵海泉, 吴博涛, 张鑫. V含量对激光熔覆铁铬合金涂层组织结构及性能的影响[J]. 钢铁钒钛, 2024, 45(6): 87-93. doi: 10.7513/j.issn.1004-7638.2024.06.012
Zhang Xuefeng, Qing Guangyang, Zhou Haoran, Weng Liu, Chen Min, Zhao Haiquan, Wu Botao, Zhang Xin. Effect of V content on microstructure and properties of laser cladding Fe-Cr alloy coatings[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 87-93. doi: 10.7513/j.issn.1004-7638.2024.06.012
Citation: Zhang Xuefeng, Qing Guangyang, Zhou Haoran, Weng Liu, Chen Min, Zhao Haiquan, Wu Botao, Zhang Xin. Effect of V content on microstructure and properties of laser cladding Fe-Cr alloy coatings[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 87-93. doi: 10.7513/j.issn.1004-7638.2024.06.012

V含量对激光熔覆铁铬合金涂层组织结构及性能的影响

doi: 10.7513/j.issn.1004-7638.2024.06.012
基金项目: 四川省自然科学基金资助项目(2022NSFSC0341);攀枝花市省级定向财力转移支付项目(22ZYZF-G-02,21ZYZF-G-01)。
详细信息
    作者简介:

    张雪峰,1965年出生,男,四川仁寿人,教授,通讯作者,长期从事钒钛材料制备方面等基础研究工作,E-mail:wzyzxf@163.com

    通讯作者:

    张雪峰,1965年出生,男,四川仁寿人,教授,通讯作者,长期从事钒钛材料制备方面等基础研究工作。E-mail:wzyzxf@163.com

  • 中图分类号: TF841.3,TG665

Effect of V content on microstructure and properties of laser cladding Fe-Cr alloy coatings

  • 摘要: 采用激光熔覆技术制备了不同V含量的铁铬合金涂层,结合金相观察、SEM & EDS、X-射线衍射等分析方法研究了V含量变化时激光熔覆铁铬合金涂层的显微组织与性能的变化规律。结果表明,V含量较低时铁铬合金涂层以树枝晶生长模式为主,涂层界面的树枝晶生长过程中Cr元素来不及完全固溶到基体中,引起基体衍射峰向高角度处偏移。增加V含量能够促进树枝晶向胞状晶转变,有效改善了Cr元素在基体中不能完全固溶的现象。VC的形成促进了凝固过程中γ-Fe向马氏体的转变,涂层硬度提升,但当V含量增加到2%时,原料中高熔点钒铁含量增加,导致涂层中气孔缺陷增加,引起涂层耐磨性能降低。当V含量为1%时涂层性能最佳。
  • 图  1  不同V含量的激光熔覆铁铬合金涂层金相组织

    (a) V-0.5中下部;(b) V-1中下部;(c) V-2中下部;(d) V-0.5中部;(e) V-1中部;(f) V-2中部

    Figure  1.  Metallographic structure of laser cladding iron-chromium alloy coatings with different V content

    图  2  不同V含量的激光熔覆铁铬合金涂层微观形貌

    (a) V-0.5上部;(b) V-1上部;(c) V-2上部;(d) V-0.5下部;(e) V-1下部;(f) V-2下部

    Figure  2.  Microscopic morphology of laser-clad iron-chromium alloy coatings with different V contents

    图  3  V-0.5铁铬合金涂层下部显微组织AB区线扫描谱

    Figure  3.  Line scan maps of microstructure in region AB of V-0.5 iron-chromium alloy coating

    图  4  V-1铁铬合金涂层上部显微组织微区面扫描图谱

    Figure  4.  Microstructure micro-area scan maps of the upper part of V-1 iron-chromium alloy coating

    图  5  不同V含量的激光熔覆铁铬合金涂层XRD衍射谱

    (a) XRD衍射图谱总图;(b) XRD衍射图谱局部放大图

    Figure  5.  XRD diffraction patterns of laser-clad iron-chromium alloy coatings with different V contents

    图  6  不同V含量的激光熔覆铁铬合金涂层显微硬度

    Figure  6.  Microhardness of laser-clad iron-chromium alloy coatings with different V contents

    图  7  不同V含量的激光熔覆铁铬合金涂层摩擦系数和磨损量

    (a) 各涂层摩擦系数曲线;(b) 各涂层磨损量

    Figure  7.  Friction coefficients and abriasion loss of laser-clad iron-chromium alloy coatings with different V contents

    图  8  不同V含量的激光熔覆铁铬合金涂层摩擦磨损形貌

    Figure  8.  Friction and wear morphology of laser cladding Fe-Cr alloy coatings with different V content

    (a) V-0.5,宏观;(b) V-1,宏观;(c) V-2,宏观;(d) V-0.5,微观;(e) V-1微观;(f) V-2,微观

    表  1  60CrMnMo基材成分

    Table  1.   Elemental composition of 60CrMnMo basic materials %

    NiCSiMnCrMoFe
    0.30.560.250.751.120.25余量
    下载: 导出CSV

    表  2  各种混合粉末的元素组成

    Table  2.   Elemental compositions of various mixed powders %

    试验样品FeVSiCrC
    V-0.587.800.501.009.701.00
    V-187.301.001.009.701.00
    V-286.302.001.009.701.00
    下载: 导出CSV
  • [1] Nie Huiwen, Zeng Songsheng, Nie Junhong, et al. Influence of VC addition amount on microstructure and properties of laser clad Fe50Mn30Cr10Co10 high-entropy alloy coating[J]. Journal of Mechanical Engineering Materials, 2023,47(4):7-11, 27. (聂辉文, 曾松盛, 聂俊红, 等. VC添加量对激光熔覆Fe50Mn30Cr10Co10高熵合金涂层组织和性能的影响[J]. 机械工程材料, 2023,47(4):7-11, 27. doi: 10.11973/jxgccl202304002

    Nie Huiwen, Zeng Songsheng, Nie Junhong, et al. Influence of VC addition amount on microstructure and properties of laser clad Fe50Mn30Cr10Co10 high-entropy alloy coating[J]. Journal of Mechanical Engineering Materials, 2023, 47(4): 7-11, 27. doi: 10.11973/jxgccl202304002
    [2] Wang Haomin, Wang Guoqing, Xiong Yangkai, et al. Microstructure and mechanical properties of laser cladded VC-Cr7C3 composite cladding layer[J]. Heat Treatment of Metals, 2022,47(11):245-252. (王皓民, 汪国庆, 熊杨凯, 等. 激光熔覆VC-Cr7C3复合熔覆层的组织与力学性能[J]. 金属热处理, 2022,47(11):245-252.

    Wang Haomin, Wang Guoqing, Xiong Yangkai, et al. Microstructure and mechanical properties of laser cladded VC-Cr7C3 composite cladding layer[J]. Heat Treatment of Metals, 2022, 47(11): 245-252.
    [3] Zhang Wei, Feng Qiuhong, Wang Eryi, et al. Microstructure and hardness of laser cladded in-situ synthesized VC reinforced Fe-Ni based composite coating[J]. Heat Treatment of Metals, 2019,44(7):190-193. (张伟, 冯秋红, 王尔亦, 等. 激光熔覆原位生成VC增强Fe-Ni基复合涂层的组织与硬度[J]. 金属热处理, 2019,44(7):190-193.

    Zhang Wei, Feng Qiuhong, Wang Eryi, et al. Microstructure and hardness of laser cladded in-situ synthesized VC reinforced Fe-Ni based composite coating[J]. Heat Treatment of Metals, 2019, 44(7): 190-193.
    [4] Lü Yufang, Xu Peng, Liang Rou, et al. Corrosion resistance of VC-reinforced Fe-based SMA coatings by laser cladding[J]. Surface Coatings Technology, 2024,478(2024):130457.
    [5] Rahman U N, Capuano L, Cabeza S, et al. Directed energy deposition and characterization of high-carbon high speed steels[J]. Additive Manufacturing, 2019, 30(2019): 1-12.
    [6] Cheng Heng, Liu Shuai, Jiang Shaoteng, et al. Effect of CeO2 on the Microstructure and properties of in situ nano-VC reinforced sub-micron Fe-based laser cladding layers[J]. Journal of Materials Engineering and Performance, 2024,33:1-11.
    [7] Shi Kao, Zhou Wenqian, Sun Yufu, et al. Effect of vanadium carbide reinforced particles on wear resistance of laser cladding Fe-Co duplex coating[J]. Journal of Thermal Spray Technology, 2023,32(1):124-134. doi: 10.1007/s11666-022-01477-y
    [8] Zhang Hui, Wu Dongting, Luan Tao, et al. Effects of graphite particle size on microstructure and properties of in-situ Ti-V carbides reinforced Fe-based laser cladding layers[J]. International Journal of Electrochemical Science, 2019, 14(3): 2208-2215.
    [9] Zhuo Yan, Li Chengxiang, Shi Xin, et al. Evaluation model of electromagnetic pulse welding effect based on Vc-β trajectory curve[J]. Journal of Materials Research and Technology, 2022,20:616-626.
    [10] Li Xuejun, Liu Ying, Zhou Tingchuan. Improvement in microstructure and wear-resistance of high chromium cast iron/medium carbon steel bimetal with high vanadium[J]. Materials Research Express, 2021, 8(4): 1-9.
    [11] Ren Yiqun, Li Liqun, Zhou Yuandong, et al. In situ synthesized VC reinforced Fe-based coating by using extreme high-speed laser cladding[J]. Materials Letters, 2022, 315: 131962.
    [12] Peng Zhiliang, Zhang Jian, Zhang Mingjun, et al. Laser in-situ preparation and mechanical properties of VC reinforced Fe-based wear-resistant composite cladding[J]. Ceramics International, 2022, 48(19): 28240-28249.
    [13] Gao Yu, Liu Ying, Wang Lu, et al. Microstructure evolution and wear resistance of laser cladded 316L stainless steel reinforced with in-situ VC-Cr7C3[J]. Surface Coatings Technology, 2022, 435: 128264.
    [14] Kirchgaßner M, Badisch E, Franek F. Behaviour of iron-based hardfacing alloys under abrasion and impact[J]. Wear, 2008,265(5):772-779.
    [15] Liang Z G, Zhan J M, Shi W Q, et al. Parameters optimization of the laser cladding of a Fe-based VC composite coating using response surface methodology (RSM)[J]. Lasers in Engineering, 2021,49:179-203.
    [16] Liu Changyu, Xu Peng, Pang Chi, et al. Phase transformation in Fe–Mn–Si SMA/WC composite coating developed by laser cladding[J]. Materials Chemistry and Physics, 2021,267:124595.
    [17] Chung R J, Tang X, Li D Y, et al. Microstructure refinement of hypereutectic high Cr cast irons using hard carbide-forming elements for improved wear resistance[J]. Wear, 2013, 301(1-2): 695-706.
    [18] Eremin E N, Losev A, Ponomarev I A, et al. Structure and properties of the weld metal N8G6M3FTB after aging[J]. AIP Conference Proceedings, 2019, 214: 40004.
    [19] Yang Xiong, Chen Yarong, Zhang Zhenlin, et al. Study on microstructure and properties of laser-clad Fe-based (Ti, V)C composite coatings[J]. Surface Coatings Technology, 2023,464:129552.
    [20] Kannan Rajesh G, Sathiya P, Bharathi D T K, et al. Welding parameter optimization by whale optimization algorithm and experimental investigation on microstructure and mechanical properties of spin arc welded 15CDV6 HSLA steel[J]. Metals and Materials International, 2023,29(9):2743-2759. doi: 10.1007/s12540-023-01406-w
    [21] Wang Haiyang, Zhang Song, Zhang Chunhua, et al. Effects of V and Cr on laser cladded Fe-based coatings[J]. Coatings, 2018,8(3):107-118. doi: 10.3390/coatings8030107
    [22] Cao Yabin, Ma Zeming, Zhu Hao, et al. Evolution behavior regulation of carbide in Fe-based laser cladding coating[J]. Materials Research Express, 2019,6(11):116590-116590. doi: 10.1088/2053-1591/ab4c5f
    [23] Zong Weian, Zhang Song, Zhang Chunhua, et al. Preparation and characterization of in situ carbide particle reinforced Fe-based gradient materials by laser melt deposition[J]. Coatings, 2019,9(8):467-481. doi: 10.3390/coatings9080467
    [24] Wang Yanfang, Zhou Xuejing, Song Zihan, et al. Microstructure and tribocorrosion properties of Cr-W-Mo-V coating fabricated via laser hot-wire cladding[J]. China Surface Engineering 2024, 37(3): 1-12. (王彦芳, 周雪景, 宋子翰, 等. 热丝激光熔覆Cr-W-Mo-V钢涂层组织与腐蚀磨损性能[J]. 中国表面工程, 2024, 37(3): 1-12.

    Wang Yanfang, Zhou Xuejing, Song Zihan, et al. Microstructure and tribocorrosion properties of Cr-W-Mo-V coating fabricated via laser hot-wire cladding[J]. China Surface Engineering 2024, 37(3): 1-12.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  18
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-20
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回