Preparation and properties of V1-xTbxO2(x=0,1,2,3,4)(M) thin films
-
摘要: 主要研究了重稀土铽元素(Tb)掺杂对二氧化钒薄膜V1-xTbxO2(x=0,1,2,3,4)(M)相结构、微观形貌、相变温度、光学及力学性能的影响。结果表明:V1-xTbxO2(x=0,1,2,3,4)(M)样品的衍射峰尖锐,未出现其他杂质峰,具有较高的结晶度和纯度。Tb元素掺杂能明显影响二氧化钒的微观结构特征,随着Tb掺杂量的增加,相变温度呈下降趋势,在4% (原子分数,下同)的掺杂水平下,相变温度降至59.01 ℃。紫外-可见-近红外光谱分析表明,在1%~4%的Tb掺杂水平下二氧化钒薄膜的光学性能增强。在2% Tb掺杂时太阳光调制能力(ΔTsol)达到9.1%,可见光透过率(Tlum)为61.5%;在4% Tb掺杂时可见光透过率达到72.5%。力学性能表明,Tb掺杂对二氧化钒薄膜的力学性能具有增强作用。当掺杂量为2%时,VO2薄膜的力学性能显示出最大值,弹性模量及硬度分别为
83.6065 GPa和8.0026 GPa。Abstract: This article mainly investigated the effects of heavy rare earth terbium element (Tb) doping on the phase structure, microstructure, phase transition temperature, optical, and mechanical properties of vanadium dioxide thin films V1-xTbxO2(x=0,1,2,3,4)(M). The analysis results show that the diffraction peaks of V1-xTbxO2(x=0,1,2,3,4)(M) samples are sharp, with no other impurity peaks observed, indicating high crystallinity and purity. Tb element doping can significantly affect the microstructural characteristics of vanadium dioxide, with the phase transition temperature decreasing as the Tb doping level increases, reaching 59.01 ℃ at a doping level of 4%. UV-Vis-NIR analysis indicates enhanced optical properties of vanadium dioxide thin films at Tb doping levels of 1%~4%. At 2% Tb doping, solar modulating ability (ΔTsol) reaches 9.1%, and visible transmittance (Tlum) is 61.5%. At 4% Tb doping, visible transmittance reaches 72.5%. Mechanical property tests show that Tb doping enhances the mechanical properties of vanadium dioxide thin films. When the doping level is 2%, the mechanical properties of VO2 films exhibit maximum values, with elastic modulus and hardness being 83.6065 GPa and 8.0026 GPa, respectively. -
表 1 ${\mathrm{V}}_{1-x}{\mathrm{Tb}}_x{\mathrm{O}}_2\;(x $=0,1,2,3,4)(M)薄膜的力学性能
Table 1. Mechanical properties of ${\mathrm{V}}_{1-x}{\mathrm{Tb}}_x{\mathrm{O}}_2\;(x $=0,1,2,3,4)(M) films
Tb掺
杂量/%hf/nm A/nm2 m S/(μN∙nm−1) Er/GPa E/GPa H/GPa 0 75.9248 3.6968 1.5759 86.8107 82.5867 80.9926 6.9155 1 72.1562 4.0017 1.5601 86.2096 84.0644 82.5565 7.2658 2 69.1897 6.8657 1.4552 87.1117 85.0541 83.6065 8.0026 3 71.7205 5.2672 1.5125 84.4035 84.4123 82.9256 7.5326 4 73.8157 4.9342 1.5222 85.8891 84.1183 82.7137 7.3593 -
[1] Gao Y F, Luo H J, Zhang Z T, et al. Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing[J]. Nano Energy, 2012,1(2):221-246. doi: 10.1016/j.nanoen.2011.12.002 [2] Jiang Kejun. IPCC special report on 1.5 ℃ warming: a starting of new era of global mitigation[J]. Climate Change Research, 2018,14(6):640-642. (姜克隽. IPCC 1.5 ℃ 特别报告发布: 温室气体减排新时代的标志[J]. 气候变化研究进展, 2018,14(6):640-642.Jiang Kejun. IPCC special report on 1.5 ℃ warming: a starting of new era of global mitigation[J]. Climate Change Research, 2018, 14(6): 640-642. [3] Lao Bin, Zheng Xuan, Li Sheng, et al. Research progress of novel quantum states and charge-spin interconversion in transition metal oxides[J]. Acta Physica Sinica, 2023,72(9):223-240. (劳斌, 郑轩, 李晟, 等. 过渡金属氧化物中新奇量子态与电荷-自旋互转换研究进展[J]. 物理学报, 2023,72(9):223-240.Lao Bin, Zheng Xuan, Li Sheng, et al. Research progress of novel quantum states and charge-spin interconversion in transition metal oxides[J]. Acta Physica Sinica, 2023, 72(9): 223-240. [4] Pavelyev V, Sharma P, Rymzhina A, et al. Advances in transition metal dichalcogenides-based flexible photodetectors[J]. Journal of Materials Science-Materials in Electronics, 2022,33(32):24397-24433. doi: 10.1007/s10854-022-09204-7 [5] Chi Liping, Niu Zhuangzhuang, Liao Jie, et al. Recent progress in intercalation chemistry of transition metal oxides for electrocatalytic applications[J]. Chemical Journal of Chinese Universities, 2023,44(5):225-249. (池丽萍, 牛壮壮, 廖洁, 等. 过渡金属氧化物插层化学及其电催化应用的新进展[J]. 高等学校化学学报, 2023,44(5):225-249.Chi Liping, Niu Zhuangzhuang, Liao Jie, et al. Recent progress in intercalation chemistry of transition metal oxides for electrocatalytic applications[J]. Chemical Journal of Chinese Universities, 2023, 44(5): 225-249. [6] Zheng Wei, Liang Gemeng, Zhang Shilin, et al. Understanding voltage hysteresis and decay during anionic redox reaction in layered transition metal oxide cathodes: A critical review[J]. Nano Research, 2023,16(3):3766-3780. doi: 10.1007/s12274-022-5003-1 [7] Wei Jiang, Ji Heng, Guo Wenhua, et al. Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams[J]. Nature Nanotechnology, 2012,7(6):357-362. doi: 10.1038/nnano.2012.70 [8] Zylbersztejn A, Mott N F. Metal-insulator transition in vanadium dioxide[J]. Physical Review B: Solid State, 1975,11(11):4383-4395. doi: 10.1103/PhysRevB.11.4383 [9] Morin F J. Oxides that show a metal-to-insulator transition at the Neel temperature[J]. Physical Review Letters, 1959,3(1):34-36. doi: 10.1103/PhysRevLett.3.34 [10] Hu Peng, Hu Ping, Vu Tuan Duc, et al. Vanadium oxide: Phase diagrams, structures, synthesis, and applications[J]. Chemical Reviews, 2023,123(8):4353-4415. doi: 10.1021/acs.chemrev.2c00546 [11] Shi Qianqian, Wang Jiang, Cheng Guanghua. Preparation technology and application of vanadium dioxide thin films (Invited)[J]. Acta Photonica Sinica, 2022,51(10):340-358. (石倩倩, 王江, 程光华. 二氧化钒薄膜的制备技术及应用进展(特邀)[J]. 光子学报, 2022,51(10):340-358.Shi Qianqian, Wang Jiang, Cheng Guanghua. Preparation technology and application of vanadium dioxide thin films (Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 340-358. [12] Zhao Ruirui, Yang Mingqing, Niu Chunhui, et al. Advances in preparation and photoelectrical properties of vanadium dioxide films[J]. Materials China, 2023,42(4):353-360. (赵瑞瑞, 杨明庆, 牛春晖, 等. 二氧化钒薄膜的制备及光电性能研究进展[J]. 中国材料进展, 2023,42(4):353-360.Zhao Ruirui, Yang Mingqing, Niu Chunhui, et al. Advances in preparation and photoelectrical properties of vanadium dioxide films[J]. Materials China, 2023, 42(4): 353-360. [13] Chaillou J, Chen Y F, Émond N, et al. Combined role of substrate and doping on the semiconductor-to-metal transition of VO2 thin films[J]. ACS Applied Electronic Materials, 2022,4(4):1841-1851. doi: 10.1021/acsaelm.2c00080 [14] Xue Yibei, Yin Shu. Element doping: a marvelous strategy for pioneering the smart applications of VO2[J]. Nanoscale, 2022,14(31):11054-11097. doi: 10.1039/D2NR01864K [15] Cao J, Ertekin E, Srinivasan V, et al. Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams[J]. Nature Nanotechnology, 2009,4(11):732-737. doi: 10.1038/nnano.2009.266 [16] Shannon R D. Crystal physics, diffraction, theoretical and general crystallography[J]. Acta Crystallographica Section A, 1976,32(5):751-767. doi: 10.1107/S0567739476001551 [17] Chen Lanli, Liu Yuchen, Yang Kebing, et al. Theoretical study of the electronic and optical properties of rare-earth (RE = La, Ce, Pr, Nd, Eu, Gd, Tb)-doped VO2 nanoparticles[J]. Computational Materials Science, 2019,161:415-421. doi: 10.1016/j.commatsci.2019.02.001 [18] Wyszecki G, Stiles V S, Kelly K L. Color science: Concepts and methods, quantitative data and formulas[J]. Physics Today, 1968,21(6):83-84. doi: 10.1063/1.3035025 [19] ASTM G173-03(2012). Standard tables for reference solar spectral irradiances: Direct normal and hemispherical on 37° tilted surface[S]. [20] Oliver W, Pharr G. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004,19(1):3-20. doi: 10.1557/jmr.2004.19.1.3 [21] Zhang Xianyuan. Experimental analysis on indentation and scratch of single crystal GaN[J]. Journal of Materials Science and Engineering, 2021,39(6):1028-1034. (张先源. 单晶氮化镓纳米压痕与划痕实验[J]. 材料科学与工程学报, 2021,39(6):1028-1034.Zhang Xianyuan. Experimental analysis on indentation and scratch of single crystal GaN[J]. Journal of Materials Science and Engineering, 2021, 39(6): 1028-1034.