留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TA18钛合金管惯性摩擦焊接头组织与性能

成培鑫 席锦会 刘姣 石立超 张健健

成培鑫, 席锦会, 刘姣, 石立超, 张健健. TA18钛合金管惯性摩擦焊接头组织与性能[J]. 钢铁钒钛, 2024, 45(6): 74-79. doi: 10.7513/j.issn.1004-7638.2024.06.010
引用本文: 成培鑫, 席锦会, 刘姣, 石立超, 张健健. TA18钛合金管惯性摩擦焊接头组织与性能[J]. 钢铁钒钛, 2024, 45(6): 74-79. doi: 10.7513/j.issn.1004-7638.2024.06.010
Cheng Peixin, Xi Jinhui, Liu Jiao, Shi Lichao, Zhang Jianjian. Microstructure and properties of inertia friction welding joint of TA18 titanium alloy tube[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 74-79. doi: 10.7513/j.issn.1004-7638.2024.06.010
Citation: Cheng Peixin, Xi Jinhui, Liu Jiao, Shi Lichao, Zhang Jianjian. Microstructure and properties of inertia friction welding joint of TA18 titanium alloy tube[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 74-79. doi: 10.7513/j.issn.1004-7638.2024.06.010

TA18钛合金管惯性摩擦焊接头组织与性能

doi: 10.7513/j.issn.1004-7638.2024.06.010
基金项目: 国家重点研发计划(SQ2022YFB3700180);陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-105)。
详细信息
    作者简介:

    成培鑫,1998年出生,男,陕西渭南人,硕士,助理工程师,主要研究方向:钛合金焊接与成型,E-mail:chengpeixin01@163.com

  • 中图分类号: TF823,TG453.9

Microstructure and properties of inertia friction welding joint of TA18 titanium alloy tube

  • 摘要: 对TA18钛合金管材开展惯性旋转摩擦焊接(IRFW)研究,采用光学显微镜与扫描电镜观察了TA18钛合金管摩擦焊接头各个区域的组织形态,结合焊接过程分析了组织的特征与演化机制,根据拉伸试验、室温冲击试验、显微硬度试验等测试结果分析了焊接接头的力学性能。结果表明,由于短时间内焊接接头处发生了强烈的塑性变形,IRFW接头焊缝处的组织为针状α′相;热影响区的组织为等轴α相、部分针状α′相和残余β相。TA18钛合金管材IRFW接头的抗拉强度与母材相当,且断裂位置均位于远离焊缝中心的位置。IRFW接头显微硬度较均匀,各区域硬度匹配性好,接头具有良好的冲击韧性,达到母材的96.85%。
  • 图  1  HWI-IFW-400K型惯性摩擦焊机

    Figure  1.  Inertia rotary friction welding machine (HWI-IFW-400K model)

    图  2  试样取样位置示意

    Figure  2.  Schematic diagram of sampling location of samples

    图  3  焊接过程中主轴转速、顶锻压力和位移的变化

    Figure  3.  Spindle speed, upset pressure, and displacement during welding process

    图  4  TA18管摩擦焊接头的宏观形貌

    Figure  4.  Macromorphology of IRFW joint of TA18 tube

    图  5  TA18管摩擦焊接头横截面形貌

    Figure  5.  Cross-sectional morphology of IRFW joint of TA18 tube

    图  6  TA18管摩擦焊接头横截面显微组织

    Figure  6.  Microstructures of cross section of IRFW joint of TA18 tube

    (a)~(c) BM;(d)~(f) TMAZ; (g)~(i) WZ

    图  7  TA18管摩擦焊接接头拉伸曲线

    Figure  7.  Tensile curve of IRFW joint of TA18 tube

    图  8  TA18管摩擦焊接接头拉伸断后试样

    Figure  8.  Tensile fracture sample of IRFW joint of TA18 tube

    图  9  TA18管摩擦焊接接头显微硬度

    Figure  9.  Microhardness of IRFW joint of TA18 tube

    表  1  TA18钛合金管化学成分

    Table  1.   Chemical composition of TA18 titanium alloy tube %

    AlVFeCONHTi
    3.02.50.20.050.080.030.01Balance
    下载: 导出CSV

    表  2  TA18管惯性摩擦焊接工艺参数

    Table  2.   Processing parameters for IRFW of TA18 tube

    顶锻压力/MPa转动惯量/(kg·m2主轴转速/(r·min-1保压时间/s
    799030015
    下载: 导出CSV

    表  3  TA18管摩擦焊接头与母材的拉伸性能

    Table  3.   Tensile test result of BM and IRFW joint of TA18 tube

    试样 抗拉强度/MPa 屈服强度/MPa 断后伸长率/% 断面收缩率/%
    焊接接头1# 757 585 15.5 44
    焊接接头2# 762 586 14.5 38
    母材1# 747 635 13.5 41
    母材2# 758 651 16.0 44
    下载: 导出CSV

    表  4  TA18管摩擦焊接头与母材的冲击韧性

    Table  4.   Impact toughness of BM and IRFW joint of TA18 tube

    试样冲击功/J冲击韧性/(J·cm−2
    焊接接头1#47.378.5
    焊接接头2#45.275
    母材1#45.876
    母材2#49.882.6
    下载: 导出CSV
  • [1] Zhao Yongqing, Ge Peng, Xin Shewei. Progresses of R&D on Ti-alloy materials in recent 5 years[J]. Materials China, 2020,39(Z1):527-534, 557-558. (赵永庆, 葛鹏, 辛社伟. 近五年钛合金材料研发进展[J]. 中国材料进展, 2020,39(Z1):527-534, 557-558.

    Zhao Yongqing, Ge Peng, Xin Shewei. Progresses of R&D on Ti-alloy materials in recent 5 years[J]. Materials China, 2020, 39(Z1): 527-534, 557-558.
    [2] Zhao Heng, Li Lanyun, Xin Chao, et al. Application and research status of titanium alloy in oil and gas exploitation[J]. Hot Working Technology, 2023(4):1-4, 15. (赵恒, 李兰云, 辛超, 等. 钛合金在油气开采中的应用及研究现状[J]. 热加工工艺, 2023(4):1-4, 15.

    Zhao Heng, Li Lanyun, Xin Chao, et al. Application and research status of titanium alloy in oil and gas exploitation[J]. Hot Working Technology, 2023(4): 1-4, 15.
    [3] Zhang Xuesong, Chen Yongjun, Hu Junling. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018,97:22-34. doi: 10.1016/j.paerosci.2018.01.001
    [4] Zheng Pengfei, Wang Wenbo, Zhang Xiaolong, et al. The effect of heat treatment system on the structure and properties of TA18 bar[J]. Forging & Metalforming, 2022(21):53-55. (郑鹏飞, 王文波, 张晓龙, 等. 热处理制度对TA18棒材组织与性能的影响[J]. 锻造与冲压, 2022(21):53-55.

    Zheng Pengfei, Wang Wenbo, Zhang Xiaolong, et al. The effect of heat treatment system on the structure and properties of TA18 bar[J]. Forging & Metalforming, 2022(21): 53-55.
    [5] Yang Jianchao, Xi Jinhui, Yang Yashe, et al. Research and application of TA18 titanium alloy tube in aerospace industry[J]. Titanium Industry Progress, 2014,31(4):6-10. (杨建朝, 席锦会, 杨亚社, 等. 航空航天用TA18钛合金管材的研发及应用[J]. 钛工业进展, 2014,31(4):6-10.

    Yang Jianchao, Xi Jinhui, Yang Yashe, et al. Research and application of TA18 titanium alloy tube in aerospace industry[J]. Titanium Industry Progress, 2014, 31(4): 6-10.
    [6] Huang Tao, Yang Fangfang, Zhan Mei, et al. Section flattening in numerical control bending process of TA18 high strength tube[J]. Rare Metal Materials and Engineering, 2018,47(8):2347-2352. doi: 10.1016/S1875-5372(18)30190-5
    [7] Luo Dengchao, Nan Li, Yang Yashe, et al. Effect of annealing temperature on mechanical properties and microstructure of TA18 tubes[J]. Hot Working Technology, 2012,41(20):206-208. (罗登超, 南莉, 杨亚社, 等. 退火温度对TA18管材性能和组织的影响[J]. 热加工工艺, 2012,41(20):206-208.

    Luo Dengchao, Nan Li, Yang Yashe, et al. Effect of annealing temperature on mechanical properties and microstructure of TA18 tubes[J]. Hot Working Technology, 2012, 41(20): 206-208.
    [8] Li Junzhao, Yu Hang, Fan Cheng, et al. Comparative study on welding process of TA18 titanium alloy sheet[J]. Titanium Industry Progress, 2023,40(2):30-34. (李军兆, 于航, 樊程, 等. TA18钛合金板材焊接工艺对比研究[J]. 钛工业进展, 2023,40(2):30-34.

    Li Junzhao, Yu Hang, Fan Cheng, et al. Comparative study on welding process of TA18 titanium alloy sheet[J]. Titanium Industry Progress, 2023, 40(2): 30-34.
    [9] Guo Jilong, Fu Juan, Zhao Yong, et al. Study on microstructure and corrosion resistance of TA18 titanium alloy TIG welding joint[J]. Hot Working Technology, 2024(7):11-15. (郭纪龙, 付娟, 赵勇, 等. TA18钛合金TIG焊接头组织及耐腐蚀性能研究[J]. 热加工工艺, 2024(7):11-15.

    Guo Jilong, Fu Juan, Zhao Yong, et al. Study on microstructure and corrosion resistance of TA18 titanium alloy TIG welding joint[J]. Hot Working Technology, 2024(7): 11-15.
    [10] Chen Wei, Zhang Yupeng, Dong Yong, et al. Effect of laser welding parameters on microstructure and mechanical properties of titanium alloy sheet[J]. Journal of Netshape Forming Engineering, 2022,14(5):100-108. (陈伟, 张宇鹏, 董勇, 等. 激光焊接参数对钛合金薄板组织及力学性能影响[J]. 精密成形工程, 2022,14(5):100-108.

    Chen Wei, Zhang Yupeng, Dong Yong, et al. Effect of laser welding parameters on microstructure and mechanical properties of titanium alloy sheet[J]. Journal of Netshape Forming Engineering, 2022, 14(5): 100-108.
    [11] Long Jian, Zhang Linjie, Zhang Long, et al. Effect of post-welding heat treatment on microstructure and properties of electron beam welding joint of new high-strength TB18 titanium alloy[J]. Welding in the World, 2024,68(1):155-162. doi: 10.1007/s40194-023-01644-x
    [12] Zhang Chunbo, Wu Yanquan, Piao Dongguang, et al. Inertia friction welding procedure of TA19 titanium alloy[J]. Transactions of the China Welding Institution, 2018,39(12):44-48, 131. (张春波, 乌彦全, 朴东光, 等. TA19钛合金惯性摩擦焊接工艺[J]. 焊接学报, 2018,39(12):44-48, 131.

    Zhang Chunbo, Wu Yanquan, Piao Dongguang, et al. Inertia friction welding procedure of TA19 titanium alloy[J]. Transactions of the China Welding Institution, 2018, 39(12): 44-48, 131.
    [13] Zhao Zhanglong, Song Xuyang, Cao Lanchuan, et al. Effect of isothermal deforming on the microstructure and property of inertial friction welding IMI834/Ti6246 dual titanium alloy[J]. Rare Metal Materials and Engineering, 2020,49(7):2388-2392. (赵张龙, 宋旭阳, 曹澜川, 等. 等温变形对惯性摩擦焊IMI834/Ti6246双钛合金组织与性能的影响[J]. 稀有金属材料与工程, 2020,49(7):2388-2392.

    Zhao Zhanglong, Song Xuyang, Cao Lanchuan, et al. Effect of isothermal deforming on the microstructure and property of inertial friction welding IMI834/Ti6246 dual titanium alloy[J]. Rare Metal Materials and Engineering, 2020, 49(7): 2388-2392.
    [14] Liu Yingying, Tian Wantao, Yang Qihao, et al. Inertia radial friction welding of Ti60(near-α)/TC18(near-β) bimetallic components: Interfacial bonding mechanism, heterogenous microstructure and mechanical properties[J]. Materials Characterization, 2024,208:113598. doi: 10.1016/j.matchar.2023.113598
    [15] Ho Thi My Nu, Truyen The Le, Luu Phuong Minh, et al. A study on rotary friction welding of titanium alloy (Ti6Al4V)[J]. Advances in Materials Science and Engineering, 2019,2019(1):1-9.
    [16] Zhou Feng, Cao Yuxin, Wan Xiangliang. Effect of rare earth lanthanum addition on toughness of coarse-grained heat-affect zone of high strength low alloy steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(12):84-92. (周峰, 曹羽鑫, 万响亮. 稀土镧的添加对低合金高强钢粗晶热影响区韧性的影响[J]. 材料热处理学报, 2021, 42(12):84-92.

    Zhou Feng, Cao Yuxin, Wan Xiangliang. Effect of rare earth lanthanum addition on toughness of coarse-grained heat-affect zone of high strength low alloy steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(12): 84-92.
    [17] Wang Shiqing, Ma Tiejun, Li Wenya, et al. Microstructure and fatigue properties of linear friction welded TC4 titanium alloy joints[J]. Science and Technology of Welding and Joining, 2017,22(3):177-181. doi: 10.1080/13621718.2016.1212971
    [18] Gavalec M, Barenyi I, Krbata M, et al. The effect of rotary friction welding conditions on the microstructure and mechanical properties of Ti6Al4V titanium alloy welds[J]. Materials, 2023,16(19):6492. doi: 10.3390/ma16196492
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  13
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-30
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回