Analysis of factors influencing the sedimentation height of hydrolyzed metatitanic acid
-
摘要: 以某钛白粉厂生产数据为依据,统计分析了水解偏钛酸沉降高度对粒度分布和初品质量的影响规律。结果表明,随着水解偏钛酸沉降高度增加,水解偏钛酸D50呈现增加趋势,相应获得初品Tcs和Scx均呈现下降趋势,初品平均粒径呈现增加趋势,控制偏钛酸沉降高度在130 mm以下可以获得颜料性能较好的钛白粉。试验研究表明,水解钛液的TiO2浓度、F值、水解晶种加量和水解判灰时间均对水解偏钛酸的沉降高度和D50有较大影响。随水解钛液浓度增加,水解偏钛酸沉降高度呈下降趋势,随F值增加,水解偏钛酸沉降高度和D50呈现增加趋势,随水解晶种加量的增加,水解偏钛酸沉降高度呈下降趋势,随判灰时间的延长,水解偏钛酸沉降高度呈现先增加后减小的趋势。Abstract: Based on the production data of a certain titanium dioxide factory, the influence of the sedimentation height of metatitanic acid on its particle size distribution and titanium dioxide pigment properties was statistically analyzed. The results show that with the increase of sedimentation height, the D50 of metatitanate shows an increasing trend, while the Tcs and Scx of titanium dioxide pigment show a decreasing trend, and the average particle size shows an increasing trend. Controlling the sedimentation height of titanium dioxide below 130 mm can obtain titanium dioxide with better pigment properties. The experimental results show that the TiO2 concentration, F value, seed addition, and first boiling holding time of titanium liquid all have a significant impact on the sedimentation height and D50 of metatitanic acid. As the concentration of TiO2 increases, the sedimentation height and D50 of metatitanic acid show a decreasing trend. As the F value increases, the sedimentation height of metatitanic acid and D50 show an increasing trend. With the increase of seed addition, the sedimentation height of metatitanic acid shows a decreasing trend. With the extension of the first boiling insulation time, the sedimentation height of metatitanic acid shows a trend of first increasing and then decreasing.
-
Key words:
- TiO2 /
- metatitanic acid /
- hydrolysis /
- sedimentation height /
- particle size distribution
-
表 1 沉降高度与初品颜料性能均值对应
Table 1. Settlement height and mean performance of primary pigments
沉降高度/mm Tcs Scx L a b 亮度 范围 均值 <100 92.97 1890.0 2.81 97.34 −0.49 3.23 95.16 100~110 105.65 1871.5 2.65 97.57 −0.49 3.37 95.03 110~120 113.60 1876.0 2.72 97.53 −0.52 3.35 95.35 120~130 126.78 1880.8 2.70 97.46 −0.47 3.55 95.25 130~150 142.63 1861.3 2.35 97.51 −0.47 3.70 95.30 >150 161.90 1841.0 2.41 97.33 −0.31 3.20 95.30 表 2 沉降高度均值与钛液指标的关系
Table 2. Relationship between mean settlement height and titanium liquid index
沉降高度/mm F值 总钛/
(g·L−1)铁钛比 固含量
×106稳定性/
mLD50/
μm范围 均值 <100 92.97 2.02 196.7 0.28 26 500 1.85 100~110 105.65 1.98 196.2 0.30 26 500 1.91 110~120 113.60 2.06 195.1 0.29 26 500 1.83 120~130 126.78 2.00 193.5 0.30 25 500 2.00 130~150 142.63 2.02 191.6 0.31 25 500 2.28 >150 161.90 1.98 189.9 0.31 26 500 2.33 -
[1] Li Xianglan. Ultrasonic-assisted titanyl sulfate hydrolysis seed preparation and hydrolysis of titanium sulfate solution[D]. Chongqing:Chongqing University, 2022. (李香兰. 超声辅助硫酸氧钛水解晶种制备和钛液水解研究[D]. 重庆:重庆大学, 2022.Li Xianglan. Ultrasonic-assisted titanyl sulfate hydrolysis seed preparation and hydrolysis of titanium sulfate solution[D]. Chongqing:Chongqing University, 2022. [2] Tian Congxue. Effects of properties and structure of metatitanic acid on rutile white pigment via short sulfate process[J]. Iron Steel Vanadium Titanium, 2019,40(1):1-6. (田从学. 偏钛酸性质结构对颜料钛白的影响[J]. 钢铁钒钛, 2019,40(1):1-6. doi: 10.7513/j.issn.1004-7638.2019.01.001Tian Congxue. Effects of properties and structure of metatitanic acid on rutile white pigment via short sulfate process[J]. Iron Steel Vanadium Titanium, 2019, 40(1): 1-6. doi: 10.7513/j.issn.1004-7638.2019.01.001 [3] Tian Congxue, Wang Qinghong, Lian Zongxin, et al. Effect of structural evolution of metatitanic acid on sulfur content during hydrolysis of industrial TiOSO4 solution[J]. Iron Steel Vanadium Titanium , 2023, 44(1): 4-9. (田从学, 王青鸿, 练宗鑫, 等. 钛液水解过程中偏钛酸的结构演变对硫含量的影响研究[J]. 钢铁钒钛, 2023, 44(1): 4-9.Tian Congxue, Wang Qinghong, Lian Zongxin, et al. Effect of structural evolution of metatitanic acid on sulfur content during hydrolysis of industrial TiOSO4 solution[J]. Iron Steel Vanadium Titanium , 2023, 44(1): 4-9. [4] Yu Kang, Li Qing, Gan Ying. Optimization of hydrolysis process in production of titanium dioxide sulfate[J]. China's High-tech Industry, 2023, (16): 87-89. (于康, 李庆, 甘影. 硫酸钛白粉生产中水解工艺优化研究[J]. 中国高新科技, 2023, (16): 87-89.Yu Kang, Li Qing, Gan Ying. Optimization of hydrolysis process in production of titanium dioxide sulfate[J]. China's High-tech Industry, 2023, (16): 87-89. [5] Zhou Qiang, Zhang Xiuzhen, Li Qing, et al. Research and application of rutile titanium dioxide powder for decorative paper of reinforced wood flooring[J]. Technology Innovation and Application, 2023, 13(26): 74-77. (周强, 张修臻, 李庆, 等. 强化木地板装饰纸用金红石型钛白粉的研究及应用[J]. 科技创新与应用, 2023, 13(26): 74-77.Zhou Qiang, Zhang Xiuzhen, Li Qing, et al. Research and application of rutile titanium dioxide powder for decorative paper of reinforced wood flooring[J]. Technology Innovation and Application, 2023, 13(26): 74-77. [6] Zeng Xiaoyi, Ma Dan, Mei Qizheng, et al. Modeling analysis and optimization of hydrolysis process parameters of metatitanic acid[J]. Journal of Chongqing University of Technology (Natural Science), 2022,36(12):281-288. (曾小义, 马丹, 梅其政, 等. 偏钛酸水解工艺参数建模分析与优化[J]. 重庆理工大学学报(自然科学), 2022,36(12):281-288.Zeng Xiaoyi, Ma Dan, Mei Qizheng, et al. Modeling analysis and optimization of hydrolysis process parameters of metatitanic acid[J]. Journal of Chongqing University of Technology (Natural Science), 2022, 36(12): 281-288. [7] Wang Kun, Lu Ruifang, Dang Leping, et al. Online characterization of seed preparation and investigation on hydrolysis kinetics of TiSO4 solution[J]. Chemical Industry and Engineering, 2022, 39(4): 50-56. (王焜, 路瑞芳, 党乐平, 等. 晶种制备的在线表征及钛液水解动力学研究[J]. 化学工业与工程, 2022, 39(4): 50-56.Wang Kun, Lu Ruifang, Dang Leping, et al. Online characterization of seed preparation and investigation on hydrolysis kinetics of TiSO4 solution[J]. Chemical Industry and Engineering, 2022, 39(4): 50-56. [8] Chen Minheng, Cong Dezi, Fang Tunan, et al. Principle of chemical engineering(second edition volume 1)[M]. Beijing: Chemical Industry Press, 1999. (陈敏恒,丛德滋,方图南,等;化工原理(第二版上册).北京:化学工业出版社,1999.Chen Minheng, Cong Dezi, Fang Tunan, et al. Principle of chemical engineering(second edition volume 1)[M]. Beijing: Chemical Industry Press, 1999.