留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒钛磁铁矿提钒尾渣综合利用工艺研究进展及展望

王新宇 赵海泉 齐渊洪 王锋

王新宇, 赵海泉, 齐渊洪, 王锋. 钒钛磁铁矿提钒尾渣综合利用工艺研究进展及展望[J]. 钢铁钒钛, 2024, 45(6): 50-58. doi: 10.7513/j.issn.1004-7638.2024.06.007
引用本文: 王新宇, 赵海泉, 齐渊洪, 王锋. 钒钛磁铁矿提钒尾渣综合利用工艺研究进展及展望[J]. 钢铁钒钛, 2024, 45(6): 50-58. doi: 10.7513/j.issn.1004-7638.2024.06.007
Wang Xinyu, Zhao Haiquan, Qi Yuanhong, Wang Feng. Research progress and prospect of comprehensive utilization technology of vanadium extraction tailings from vanadium-titanium magnetite[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 50-58. doi: 10.7513/j.issn.1004-7638.2024.06.007
Citation: Wang Xinyu, Zhao Haiquan, Qi Yuanhong, Wang Feng. Research progress and prospect of comprehensive utilization technology of vanadium extraction tailings from vanadium-titanium magnetite[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 50-58. doi: 10.7513/j.issn.1004-7638.2024.06.007

钒钛磁铁矿提钒尾渣综合利用工艺研究进展及展望

doi: 10.7513/j.issn.1004-7638.2024.06.007
详细信息
    作者简介:

    王新宇,1979年出生,女,辽宁铁岭人,高级试验师,主要从事资源综合利用研究,E-mail:wangxinyu@pzhu.edu.cn

    通讯作者:

    齐渊洪,1958年出生,男,教授,主要从事高炉炼铁新技术、非高炉炼铁新技术及资源循环利用、冶金过程中污染物排放控制等方面的研究,E-mail:qiyh0525_cn@sina.com

  • 中图分类号: X757

Research progress and prospect of comprehensive utilization technology of vanadium extraction tailings from vanadium-titanium magnetite

  • 摘要: 钒钛磁铁矿提钒尾渣是转炉钒渣提钒的副产品,因含有多种有价元素而极具回收价值。但因目前缺乏有效的利用工艺而大量填埋或堆积,造成资源浪费和环境污染。根据钒渣提钒工艺和化学成分对钒钛磁铁矿提钒尾渣进行了分类,阐述了采用氧化法(包括氧化焙烧、电场耦合H2O2+CaF2浸出法)、直接浸出法(包括酸浸和亚熔盐法)、还原法(包括熔融还原和直接还原)对提钒尾渣中有价元素提取的原理和优缺点,以及作为功能材料用于制备蓄热材料的研究现状。认为酸浸工艺是当前研究的热点,但熔融还原能够同时回收铁、钒、铬、钛,具有综合回收率高、工艺流程短的特点,应用前景较广。指出了当前综合利用工艺存在的问题,提出了火法冶金+湿法冶金+物理分离的耦合技术以及作为热能蓄热材料使用的研究方向,并应加强终渣、废液排放的监管力度和毒性检测的研究,为钒钛磁铁矿提钒尾渣的高值化、无害化综合利用提供参考。
  • 图  1  氧化焙烧+酸浸法提取提钒尾渣中的有价元素工艺流程

    Figure  1.  Process flow for extracting valuable elements from vanadium extraction tailings by oxidation roasting + acid leaching method

    表  1  钒钛磁铁矿提钒尾渣主要化学成分及分类

    Table  1.   Main chemical compositions and classification of vanadium extraction tailings from vanadium titanium-magnetite %

    分类1Fe2O3TiO2V2O5SiO2Al2O3CaONa2OCr2O3MgOMnO分类2参考文献
    钠化
    提钒
    尾渣
    54.9017.400.282.712.860.574.230.330.53普通型[1]
    35.1010.623.6015.061.951.967.686.607.86高铬型[12]
    47.1411.951.7520.412.181.946.874.322.634.87高铬型[13]
    钙化
    提钒
    尾渣
    33.247.081.2010.971.5415.914.702.336.45高铬型[13]
    45.5014.892.6514.513.366.741.532.574.88普通型[3]
    73.7812.390.471.583.761.260.010.730.25普通型[14]
    31.0811.000.6616.952.175.667.602.794.75高铬型[15]
    下载: 导出CSV

    表  2  采用直接浸出工艺对提钒尾渣再提钒的研究对比

    Table  2.   Comparison of processes for vanadium re-extraction from vanadium extraction tailings by direct leaching process

    工艺钒提取率/%优点缺点
    常压酸浸<60设备简单,处理能力大钒浸出率较低,酸用量多,腐蚀设备,污染环境
    加压酸浸可达80工艺流程短,钒浸出率高对设备要求高,处理能力小
    亚熔盐法可达85提钒效率高,可以实现钒、铬共同提取设备投资大,工艺复杂,对环境造成潜在影响
    下载: 导出CSV

    表  3  还原法回收提钒尾渣中有价元素的研究对比

    Table  3.   Comparison of processes on recovery of valuable elements in vanadium extraction tailings by reduction method

    工艺名称 工艺参数 Fe回收率/% 其它有价金属的处置 V、Cr回收率/% 参考文献
    熔融还原 >90 V、Cr被还原进入铁水 >90 [33]
    提钒尾渣与铬铁矿协同还原熔分 93.49 Cr被还原进入铁水 95.18 [15]
    高温直接还原+磁选 99 V、Cr被还原进入铁水 V:90 Cr:95 [3]
    CaCO3还原焙烧+磁选 91.05 TiO2含量为41.75%的含钛渣 [14]
    注:①采用电弧炉熔融还原,配碳量为12%~14%,碱度为1.0~1.1;②铬铁矿与提钒尾渣配比为5∶1、SiO2添加量为5.08%、配碳量为20.54%、还原熔分时间为35 min;③1400 ℃焙烧+磁选;④还原温度1250 ℃、还原时间2 h、还原剂用量为尾渣质量的20%、CaCO3加入量为5% 。
    下载: 导出CSV

    表  4  钒钛磁铁矿提钒尾渣制备显热蓄热材料的性能研究

    Table  4.   Study on properties of sensible heat storage materials prepared from vanadium extraction tailings of vanadium titanium-magnetite

    密度/(g·cm−3)导热系数/[W·(m·K)−1]比热容/[J·(kg·K)−1]蓄热密度/(kJ·kg−1)蓄热量/(kWh·kg−1)1000 kWh所需质量/kg
    提钒尾渣蓄热材料2.27~2.5510.848~1.54133~7 064207~2550.058~0.0711410017300
    常用显热蓄热材料1.8~3.01.1~7.0850~1400135~2980.038~0.0831210020300
    注:①指高温混凝土、镁耐火砖、硅耐火砖、固体氯化钠、砂石。
    下载: 导出CSV

    表  5  添加钒钛磁铁矿提钒尾渣对相变蓄热材料性能的影响研究

    Table  5.   Study on the effect of vanadium extraction tailings from vanadium titanium magnetite on the properties of phase-change thermal storage materials

    原料 制备工艺 性能 参数及效果
    VT+CF+PA+SA+PW 恒温浸渍法和浇注法 蓄热性
    VT+EG+PW 熔融共混法 稳定性
    导电性
    导热性
    注:①在三种复合材料CF+PW、CF+PA和CF+SA中分别添加2%、1.6%和0.8%的微米级VT后,材料蓄-放热时间缩短,中心处温度和最高温度的差值分别提高2.7~3.8 ℃、6.4~7.8 ℃和5~11.9 ℃;②进行60次热循环,添加VT前后,复合材料EG+PW的质量损失率由小于0.03%升高到0.08%,添加VT对材料热稳定性影响较小;③成型压力为2~8 MPa时,添加粒度小于45 µm的VT后的材料电阻率均比未添加的小,电阻率随VT添加量增加而减小,说明添加VT可以增强材料的导电性能;④成型压力从2 MPa增加到8 MPa时,电阻率下降率在49%以下,添加VT后复合材料电阻率下降率变大,添加VT可以使复合材料电阻率的压敏性提高;⑤添加1%~3%的微米级VT之后,在4 MPa下压制成型,进行60次热循环,复合材料在不同温度下热导率多数变大,添加微米级VT可以增强复合材料的导热性能。
    下载: 导出CSV
  • [1] Sui Yulei, Guo Yufeng, Travyanov A Y, et al. Reduction roasting-magnetic separation of vanadium tailings in presence of sodium sulfate and its mechanisms[J]. Rare Met., 2016,35:954-960. doi: 10.1007/s12598-015-0616-0
    [2] Yuan Rui, Li Shaolong, Che Yusi, et al. A critical review on extraction and refining of vanadium metal[J]. Int. J. Refract. H., 2021,101:105696. doi: 10.1016/j.ijrmhm.2021.105696
    [3] Xiang Junyi, Huang Qingyun, Lü Wei, et al. Recovery of tailings from the vanadium extraction process by carbothermic reduction method: Thermodynamic, experimental and hazardous potential assessment[J]. J. Hazard. Mater., 2018,357:128-137. doi: 10.1016/j.jhazmat.2018.05.064
    [4] Li Lanjie, Zhao Beibei, Gao Minglei, et al. Clean utilization of solid waste of vanadium chemical and metallurgy[J]. The Chinese Journal of Process Engineering, 2019,19(S1):99-108. (李兰杰, 赵备备, 高明磊, 等. 钒化工冶金固废资源化清洁利用[J]. 过程工程学报, 2019,19(增刊1):99-108.

    Li Lanjie, Zhao Beibei, Gao Minglei, et al. Clean utilization of solid waste of vanadium chemical and metallurgy[J]. The Chinese Journal of Process Engineering, 2019, 19(S1): 99-108.
    [5] Gilligan R, Nikoloski A N. The extraction of vanadium from titanomagnetites and other sources[J]. Miner. Eng., 2020,146:10610.
    [6] Wang Xin, Xiang Junyi, Ling Jiawei, et al. Comprehensive utilization of vanadium extraction tailings: A brief review[C]// Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies. Springer, 2020: 327-334.
    [7] Huo Zhihao, Wang Mei, Yue Hongrui. Technology of extracting vanadium from vanadium slag by sodium roasting and comprehensive utilization of vanadium tailings[C]//Proceedings of the 2022 Annual Science and Technology Conference of the Chinese Society of Environmental Sciences (II). Nanchang: China Agricultural University Press, 2022: 1075-1078. (霍志豪, 王梅, 岳宏瑞. 钒渣钠化焙烧提钒工艺及提钒尾渣综合利用[C]//中国环境科学学会2022年科学技术年会论文集(II). 南昌: 中国农业大学出版社, 2022: 1075-1078.

    Huo Zhihao, Wang Mei, Yue Hongrui. Technology of extracting vanadium from vanadium slag by sodium roasting and comprehensive utilization of vanadium tailings[C]//Proceedings of the 2022 Annual Science and Technology Conference of the Chinese Society of Environmental Sciences (II). Nanchang: China Agricultural University Press, 2022: 1075-1078.
    [8] Xu Chongguang, Wang Hailin, Yang Huan, et al. Comprehensive utilization of extracting vanadium tailings[J]. Ferro Alloys, 2018,49(1):40-43. (许崇光, 王海林, 杨欢, 等. 提钒尾渣的综合利用[J]. 铁合金, 2018,49(1):40-43.

    Xu Chongguang, Wang Hailin, Yang Huan, et al. Comprehensive utilization of extracting vanadium tailings[J]. Ferro Alloys, 2018, 49(1): 40-43.
    [9] Li Lanjie, Zhao Beibei, Wang Haixu, et al. The process of high efficiency dealkalization and ore blending in ironmaking of the extracted vanadium residue[J]. Chin. J. Process Eng, 2017,17(1):138-143. (李兰杰, 赵备备, 王海旭, 等. 提钒尾渣高效脱碱及配矿炼铁工艺[J]. 过程工程学报, 2017,17(1):138-143. doi: 10.12034/j.issn.1009-606X.216215

    Li Lanjie, Zhao Beibei, Wang Haixu, et al. The process of high efficiency dealkalization and ore blending in ironmaking of the extracted vanadium residue[J]. Chin. J. Process Eng, 2017, 17(1): 138-143. doi: 10.12034/j.issn.1009-606X.216215
    [10] Guo Rui, Zhou Mi, Xie Huaqing, et al. Experimental research on preparation of ferrochrome by reducing vanadium tailings with peanut shell[J]. Sintering and Pelletizing, 2022,47(6):116-122. (郭锐, 周密, 谢华清, 等. 花生壳还原提钒尾渣制备铬铁合金的试验研究[J]. 烧结球团, 2022,47(6):116-122.

    Guo Rui, Zhou Mi, Xie Huaqing, et al. Experimental research on preparation of ferrochrome by reducing vanadium tailings with peanut shell[J]. Sintering and Pelletizing, 2022, 47(6): 116-122.
    [11] Kim E, Spooren J, Broos K, et al. Selective recovery of Cr from stainless steel slag by alkaline roasting followed by water leaching[J]. Hydrometallurgy, 2015,158:139-148. doi: 10.1016/j.hydromet.2015.10.024
    [12] Zhao Qifeng, Wang Xiwen, Xia Wei, et al. Research status and prospect of vanadium sodium waste waste[C]//Proceedings of the 11th National Energy and Thermal Industry Annual Conference. Ma, anshan: Chinese Society for Metals, 2021: 515-520. (赵奇丰, 王熙文, 夏伟, 等. 钠化提钒废渣综合利用研究现状及展望[C]//第十一届全国能源与热工学术年会论文集. 马鞍山: 中国金属学会能源与热工分会, 2021: 515-520.

    Zhao Qifeng, Wang Xiwen, Xia Wei, et al. Research status and prospect of vanadium sodium waste waste[C]//Proceedings of the 11th National Energy and Thermal Industry Annual Conference. Ma, anshan: Chinese Society for Metals, 2021: 515-520.
    [13] Liu Jinsheng, Ding Xueyong, Xue Xiangxin, et al. Research progress of comprehensive utilization of vanadium extraction tailings[J]. Iron and Steel, 2021,56(7):152-160. (刘金生, 丁学勇, 薛向欣, 等. 提钒尾渣资源化综合利用的研究进展[J]. 钢铁, 2021,56(7):152-160.

    Liu Jinsheng, Ding Xueyong, Xue Xiangxin, et al. Research progress of comprehensive utilization of vanadium extraction tailings[J]. Iron and Steel, 2021, 56(7): 152-160.
    [14] Gao Feng, Du Hao, Liu Biao, et al. Study on the technology of enhanced reduction-magnetic separation of titanium and iron from calcium-based vanadium extraction tailings[J]. Iron Steel Vanadium Titanium, 2023,44(1):84-91. (高峰, 杜浩, 刘彪, 等. 钙基提钒尾渣强化还原-磁选分离钛铁技术研究[J]. 钢铁钒钛, 2023,44(1):84-91.

    Gao Feng, Du Hao, Liu Biao, et al. Study on the technology of enhanced reduction-magnetic separation of titanium and iron from calcium-based vanadium extraction tailings[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 84-91.
    [15] Wang Guang. Fundamental study on synergistic reduction of vanadium extraction tailings with high content chromium and chromite to smelt high carbon ferrochromium[D]. Chongqing: Chongqing University, 2020. (王广. 高铬型提钒尾渣与铬铁矿协同还原冶炼高碳铬铁的基础研究[D]. 重庆: 重庆大学, 2020.

    Wang Guang. Fundamental study on synergistic reduction of vanadium extraction tailings with high content chromium and chromite to smelt high carbon ferrochromium[D]. Chongqing: Chongqing University, 2020.
    [16] Liu Shiyuan, Wang Lijun, Chen Jun, et al. Research progress of vanadium extraction processes from vanadium slag: A review[J]. Sep. Purif. Technol. , 2024: 127035.
    [17] Zhang Ying, Zhang Ting,an, Dreisinger David, et al. Recovery of vanadium from calcification roasted-acid leaching tailing by enhanced acid leaching[J]. J. Hazard. Mater., 2019,369:632-641. doi: 10.1016/j.jhazmat.2019.02.081
    [18] Li Fangfang, Wen Jing, Yu Tangxia, et al. Synergic acid leaching of vanadium from sodium vanadium extraction tailings[J/OL]. Multipurpose Utilization of Mineral Resources [2023-11-13]. https://link.cnki.net/urlid/51.1251.TD.20231110.1042.010. (李芳芳, 温婧, 余唐霞, 等. 钠化提钒尾渣协同酸浸提钒[J/OL]. 矿产综合利用 [2023-11-13]. https://link.cnki.net/urlid/51.1251.TD.20231110.1042.010.

    Li Fangfang, Wen Jing, Yu Tangxia, et al. Synergic acid leaching of vanadium from sodium vanadium extraction tailings[J/OL]. Multipurpose Utilization of Mineral Resources [2023-11-13]. https://link.cnki.net/urlid/51.1251.TD.20231110.1042.010.
    [19] Meng Lipeng, Zhao Chu, Wang Shaona, et al. Improvement of vanadium extraction from extracted vanadium residue in China[J]. Iron Steel Vanadium Titanium, 2015,36(3):49-56. (孟利鹏, 赵楚, 王少娜, 等. 国内提钒尾渣再提钒技术研究进展[J]. 钢铁钒钛, 2015,36(3):49-56.

    Meng Lipeng, Zhao Chu, Wang Shaona, et al. Improvement of vanadium extraction from extracted vanadium residue in China[J]. Iron Steel Vanadium Titanium, 2015, 36(3): 49-56.
    [20] Liu Bao, Li Jin, Ren Qianqian, et al. Leaching behavior and mineralogical evolution of vanadium released from sodium roasted-acid leaching tailing of vanadium slag[J]. J. of Iron Steel Res. Int., 2022,29(5):772-782. doi: 10.1007/s42243-021-00716-w
    [21] Zhang Xuefeng, Liu Fengguo, Xue Xiangxin, et al. Effects of microwave and conventional blank roasting on oxidation behavior, microstructure and surface morphology of vanadium slag with high chromium content[J]. J. Alloy. Comp., 2016,686:356-365. doi: 10.1016/j.jallcom.2016.06.038
    [22] Li Wei, Fu Guiqin, Chu Mansheng, et al. Oxidation induration process and kinetics of Hongge vanadium titanium-bearing magnetite pellets[J]. Ironmak. Steelmak., 2016,44:294-303.
    [23] Lü Changxiao, Zhang Ting, an, Zhang Ying, et al. Comprehensive recovery of vanadium from calcification roasting-acid leaching tailings[J]. Chinese Journal of Rare Metals, 2020,44(11):1208-1214. (吕昌晓, 张廷安, 张莹, 等. 从钙化焙烧-酸浸尾渣中综合回收钒的研究[J]. 稀有金属, 2020,44(11):1208-1214.

    Lü Changxiao, Zhang Ting, an, Zhang Ying, et al. Comprehensive recovery of vanadium from calcification roasting-acid leaching tailings[J]. Chinese Journal of Rare Metals, 2020, 44(11): 1208-1214.
    [24] Rahman A, Behnam S. Recovery of vanadium from secondary tailing of iron ore by salt roasting-alkaline leaching and solvent extraction processes[J]. Iran. J. Earth Sci., 2019,11(1):30-37.
    [25] Wen Jin, Jiang Tao, Gao Huiyang, et al. An efficient utilization of chromium-containing vanadium tailings: Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide[J]. J. Environ. Manage., 2019,244:119-126. doi: 10.1016/j.jenvman.2019.05.037
    [26] Cheng Jie, Li Hongyi, Chen Xinmian, et al. Eco-friendly chromium recovery from hazardous chromium-containing vanadium extraction tailings via low-dosage roasting[J]. Process Saf. Environ., 2022,164:818-826. doi: 10.1016/j.psep.2022.06.065
    [27] Tavakolikhaledi M R. Vanadium: Leaching and solvent extraction[D]. Vancouver: University of British Columbia, 2014.
    [28] Du Weitong, Jiang Congxiang, Chen Zhuo, et al. Vanadium extraction by roasting from high chlorine-and-iron titanium tetrachloride tailings after vanadium removal[J]. Mining and Metallurgical Engineering, 2022,42(2):106-108. (堵伟桐, 姜丛翔, 陈卓, 等. 高氯高铁型四氯化钛除钒尾渣焙烧提钒工艺研究[J]. 矿冶工程, 2022,42(2):106-108.

    Du Weitong, Jiang Congxiang, Chen Zhuo, et al. Vanadium extraction by roasting from high chlorine-and-iron titanium tetrachloride tailings after vanadium removal[J]. Mining and Metallurgical Engineering, 2022, 42(2): 106-108.
    [29] Yu Qiang. Study on deep extraction of vanadium from calcified acid leaching tailings[D]. Chongqing: Chongqing University, 2021. (余强. 钙化酸浸提钒尾渣深度提钒的研究[D]. 重庆: 重庆大学, 2021.

    Yu Qiang. Study on deep extraction of vanadium from calcified acid leaching tailings[D]. Chongqing: Chongqing University, 2021.
    [30] Dong Mengqi. Recovery and utilization of iron resources in pressurized acid leaching residue of laterite nickel ore[D]. Kunming: Kunming University of Science and Technology, 2023. (董梦奇. 红土镍矿加压酸浸渣铁资源的回收利用[D]. 昆明: 昆明理工大学, 2023.

    Dong Mengqi. Recovery and utilization of iron resources in pressurized acid leaching residue of laterite nickel ore[D]. Kunming: Kunming University of Science and Technology, 2023.
    [31] Kolmachikhina E B, Lugovitskaya T N, Tretiak M A, et al. Surfactants and their mixtures under conditions of autoclave sulfuric acid leaching of zinc concentrate: Surfactant selection and laboratory tests[J]. Trans. Nonferrous Met. Soc. China, 2023,33:3529-3543. doi: 10.1016/S1003-6326(23)66352-6
    [32] Liu Cun, Li Yun, Guo Hongfei, et al. Preparation of spherical hydroxycancrinite from potassic rocks activated by sub-molten salt[J]. Journal of Chemical Engineering of Chinese Universities, 2023,37(4):623-632. (刘存, 李雲, 郭宏飞, 等. 亚熔盐活化含钾岩石制备球形羟基钙霞石[J]. 高校化学工程学报, 2023,37(4):623-632.

    Liu Cun, Li Yun, Guo Hongfei, et al. Preparation of spherical hydroxycancrinite from potassic rocks activated by sub-molten salt[J]. Journal of Chemical Engineering of Chinese Universities, 2023, 37(4): 623-632.
    [33] Wu Enhui, Zhu Rong, Yang Shaoli, et al. Experimental and thermodynamic study on reduction of carbon-containing pellet of vanadium tailings smelted by electric arc furnace[J]. Iron Steel Vanadium Titanium, 2015,36(5):40-46. (吴恩辉, 朱荣, 杨绍利, 等. 提钒尾渣含碳球团电弧炉熔融还原热力学分析与试验[J]. 钢铁钒钛, 2015,36(5):40-46.

    Wu Enhui, Zhu Rong, Yang Shaoli, et al. Experimental and thermodynamic study on reduction of carbon-containing pellet of vanadium tailings smelted by electric arc furnace[J]. Iron Steel Vanadium Titanium, 2015, 36(5): 40-46.
    [34] Hou Jing, Wu Enhui, Li Jun. Current situation and progress of comprehensive utilization of vanadium extraction tailings[J]. Conservation and Utilization of Mineral Resources, 2017(6):103-108. (侯静, 吴恩辉, 李军. 提钒尾渣的综合利用研究现状及进展[J]. 矿产保护与利用, 2017(6):103-108.

    Hou Jing, Wu Enhui, Li Jun. Current situation and progress of comprehensive utilization of vanadium extraction tailings[J]. Conservation and Utilization of Mineral Resources, 2017(6): 103-108.
    [35] Leng Guanghui, Cao Hui, Peng Hao, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017,6(5):1058-1075. (冷光辉, 曹惠, 彭浩, 等. 储热材料研究现状及发展趋势[J]. 储能科学与技术, 2017,6(5):1058-1075.

    Leng Guanghui, Cao Hui, Peng Hao, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017, 6(5): 1058-1075.
    [36] Kuravi S, Trahan J, Yogi Goswami D, et al. Thermal energy storage technologies and systems for concentrating solar power plants[J]. Prog. Energ. Combust., 2013,39:285-319. doi: 10.1016/j.pecs.2013.02.001
    [37] Xu Xiaohong, Lao Xinbin, Wu Jianfeng, et al. Synthesis and characterization of Al2O3/SiC composite ceramics via carbothermal reduction of alumino-silicate precursor for solar sensible thermal storage[J]. J. Alloys Compd., 2016,662:126-137. doi: 10.1016/j.jallcom.2015.12.038
    [38] Piao Rongxun, Li Xuan, Li Guowei, et al. Preparation of high temperature sensible heat storage material from vanadium extraction tailings and graphite[J]. Iron Steel Vanadium Titanium, 2020,41(6):52-59. (朴荣勋, 李轩, 李国伟, 等. 利用提钒尾渣和石墨制备高温显热蓄热材料的研究[J]. 钢铁钒钛, 2020,41(6):52-59.

    Piao Rongxun, Li Xuan, Li Guowei, et al. Preparation of high temperature sensible heat storage material from vanadium extraction tailings and graphite[J]. Iron Steel Vanadium Titanium, 2020, 41(6): 52-59.
    [39] Piao Rongxun, Li Xuan, Ji Ying. Research and modeling on thermal conductivity of high temperature heat storage material based on vanadium tailings[J]. Iron Steel Vanadium Titanium, 2021,42(1):93-99. (朴荣勋, 李轩, 季颖. 基于提钒尾渣的高温显热蓄热材料导热性能研究及模拟[J]. 钢铁钒钛, 2021,42(1):93-99.

    Piao Rongxun, Li Xuan, Ji Ying. Research and modeling on thermal conductivity of high temperature heat storage material based on vanadium tailings[J]. Iron Steel Vanadium Titanium, 2021, 42(1): 93-99.
    [40] Hou Zongchen. Preparation and performance research on a new modified solid high-temperature sensible heat storage materials[D]. Zhejiang: Zhejiang University, 2023. (侯宗臣. 新型改性固体高温显热蓄热材料的制备与性能研究[D]. 浙江: 浙江大学, 2023.

    Hou Zongchen. Preparation and performance research on a new modified solid high-temperature sensible heat storage materials[D]. Zhejiang: Zhejiang University, 2023.
    [41] Xu Zhong, Hou Jing, Li Jun, et al. Investigation on heat storage characteristics of vanadium tailings/carbon foam/organic matter composite phase change material[J/OL]. Multipurpose Utilization of Mineral Resources, https://link.cnki.net/urlid/51.1251.TD.20231123.1039.008. (徐众, 侯静, 李军, 等. 提钒尾渣/泡沫碳/有机质复合相变材料蓄热性能[J/OL]. 矿产综合利用, https://link.cnki.net/urlid/51.1251.TD.20231123.1039.008.

    Xu Zhong, Hou Jing, Li Jun, et al. Investigation on heat storage characteristics of vanadium tailings/carbon foam/organic matter composite phase change material[J/OL]. Multipurpose Utilization of Mineral Resources, https://link.cnki.net/urlid/51.1251.TD.20231123.1039.008.
    [42] Xu Zhong, Li Jun, Wu Enhui, et al. Influence of vanadium tailings on the thermal stability and electrical conductivity of expanded graphite/paraffin composite phase change materials[J]. Chinese Journal of Applied Chemistry, 2022(3):461-469. (徐众, 李军, 吴恩辉, 等. 添加提钒尾渣对膨胀石墨/石蜡复合相变材料稳定性和导电性的影响[J]. 应用化学, 2022(3):461-469.

    Xu Zhong, Li Jun, Wu Enhui, et al. Influence of vanadium tailings on the thermal stability and electrical conductivity of expanded graphite/paraffin composite phase change materials[J]. Chinese Journal of Applied Chemistry, 2022(3): 461-469.
    [43] Xu Zhong, Hou Jing, Li Jun, et al. Influence of vanadium tailing on the thermal conductivity performance of EG/PW phase change composite material[J]. New Chemical Materials, 2021,49(5):115-119. (徐众, 侯静, 李军, 等. 提钒尾渣对膨胀石墨/石蜡复合相变材料导热性能的影响[J]. 化工新型材料, 2021,49(5):115-119.

    Xu Zhong, Hou Jing, Li Jun, et al. Influence of vanadium tailing on the thermal conductivity performance of EG/PW phase change composite material[J]. New Chemical Materials, 2021, 49(5): 115-119.
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  14
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回