Research progress and prospect of comprehensive utilization technology of vanadium extraction tailings from vanadium-titanium magnetite
-
摘要: 钒钛磁铁矿提钒尾渣是转炉钒渣提钒的副产品,因含有多种有价元素而极具回收价值。但因目前缺乏有效的利用工艺而大量填埋或堆积,造成资源浪费和环境污染。根据钒渣提钒工艺和化学成分对钒钛磁铁矿提钒尾渣进行了分类,阐述了采用氧化法(包括氧化焙烧、电场耦合H2O2+CaF2浸出法)、直接浸出法(包括酸浸和亚熔盐法)、还原法(包括熔融还原和直接还原)对提钒尾渣中有价元素提取的原理和优缺点,以及作为功能材料用于制备蓄热材料的研究现状。认为酸浸工艺是当前研究的热点,但熔融还原能够同时回收铁、钒、铬、钛,具有综合回收率高、工艺流程短的特点,应用前景较广。指出了当前综合利用工艺存在的问题,提出了火法冶金+湿法冶金+物理分离的耦合技术以及作为热能蓄热材料使用的研究方向,并应加强终渣、废液排放的监管力度和毒性检测的研究,为钒钛磁铁矿提钒尾渣的高值化、无害化综合利用提供参考。Abstract: Vanadium extraction tailings of vanadium-titanium magnetite, as a by-product of vanadium extraction from converter vanadium slag, have great recovery value because of containing many valuable elements. However, due to the lack of effective utilization technology, they are currently being landfilled or stockpiled in large quantities, leading to resource waste and environmental pollution, resulting in waste of resources and environmental pollution. In this paper vanadium extraction tailings of vanadium-titanium magnetite had been classified based on vanadium extraction technology from vanadium slag and their chemical composition. The principle, advantages and disadvantages of extracting valuable elements from vanadium extraction tailings by oxidation method (including oxidation roasting, electric field coupled leaching of H2O2 + CaF2), direct leaching (including acid leaching and submolten salt process) and reduction method (including melting reduction and direct reduction) were described. The current research status of using them as functional materials for preparing thermal storage materials had been discussed. Acid leaching process is considered to be a hot topic of current research. However, smelting reduction can simultaneously recover iron, vanadium, chromium and titanium, featuring a high comprehensive recovery rate and short process, and therefore has a broader application prospect. Then he problems existing in the current comprehensive utilization process were pointed out. And the coupling technology of pyrometallurgy + hydrometallurgy + physical separation was proposed, as well as research directions for their use as solar thermal storage materials. In addition, the supervision of final residue and waste liquid discharge and the research on toxicity detection should be strengthened. It is hoped these introductions can provide reference for the development direction of high value and harmless comprehensive utilization of vanadium extraction tailings from vanadium titanium magnetite.
-
表 1 钒钛磁铁矿提钒尾渣主要化学成分及分类
Table 1. Main chemical compositions and classification of vanadium extraction tailings from vanadium titanium-magnetite
% 分类1 Fe2O3 TiO2 V2O5 SiO2 Al2O3 CaO Na2O Cr2O3 MgO MnO 分类2 参考文献 钠化
提钒
尾渣54.90 17.40 0.28 2.71 2.86 0.57 4.23 0.33 0.53 普通型 [1] 35.10 10.62 3.60 15.06 1.95 1.96 7.68 6.60 7.86 高铬型 [12] 47.14 11.95 1.75 20.41 2.18 1.94 6.87 4.32 2.63 4.87 高铬型 [13] 钙化
提钒
尾渣33.24 7.08 1.20 10.97 1.54 15.91 4.70 2.33 6.45 高铬型 [13] 45.50 14.89 2.65 14.51 3.36 6.74 1.53 2.57 4.88 普通型 [3] 73.78 12.39 0.47 1.58 3.76 1.26 0.01 0.73 0.25 普通型 [14] 31.08 11.00 0.66 16.95 2.17 5.66 7.60 2.79 4.75 高铬型 [15] 表 2 采用直接浸出工艺对提钒尾渣再提钒的研究对比
Table 2. Comparison of processes for vanadium re-extraction from vanadium extraction tailings by direct leaching process
工艺 钒提取率/% 优点 缺点 常压酸浸 <60 设备简单,处理能力大 钒浸出率较低,酸用量多,腐蚀设备,污染环境 加压酸浸 可达80 工艺流程短,钒浸出率高 对设备要求高,处理能力小 亚熔盐法 可达85 提钒效率高,可以实现钒、铬共同提取 设备投资大,工艺复杂,对环境造成潜在影响 表 3 还原法回收提钒尾渣中有价元素的研究对比
Table 3. Comparison of processes on recovery of valuable elements in vanadium extraction tailings by reduction method
工艺名称 工艺参数 Fe回收率/% 其它有价金属的处置 V、Cr回收率/% 参考文献 熔融还原 ① >90 V、Cr被还原进入铁水 >90 [33] 提钒尾渣与铬铁矿协同还原熔分 ② 93.49 Cr被还原进入铁水 95.18 [15] 高温直接还原+磁选 ③ 99 V、Cr被还原进入铁水 V:90 Cr:95 [3] CaCO3还原焙烧+磁选 ④ 91.05 TiO2含量为41.75%的含钛渣 [14] 注:①采用电弧炉熔融还原,配碳量为12%~14%,碱度为1.0~1.1;②铬铁矿与提钒尾渣配比为5∶1、SiO2添加量为5.08%、配碳量为20.54%、还原熔分时间为35 min;③ 1400 ℃焙烧+磁选;④还原温度1250 ℃、还原时间2 h、还原剂用量为尾渣质量的20%、CaCO3加入量为5% 。表 4 钒钛磁铁矿提钒尾渣制备显热蓄热材料的性能研究
Table 4. Study on properties of sensible heat storage materials prepared from vanadium extraction tailings of vanadium titanium-magnetite
密度/(g·cm−3) 导热系数/[W·(m·K)−1] 比热容/[J·(kg·K)−1] 蓄热密度/(kJ·kg−1) 蓄热量/(kWh·kg−1) 1000 kWh所需质量/kg提钒尾渣蓄热材料 2.27~2.551 0.848~1.54 133~7 064 207~255 0.058~0.071 14100 ~17300 常用显热蓄热材料① 1.8~3.0 1.1~7.0 850~ 1400 135~298 0.038~0.083 12100 ~20300 注:①指高温混凝土、镁耐火砖、硅耐火砖、固体氯化钠、砂石。 表 5 添加钒钛磁铁矿提钒尾渣对相变蓄热材料性能的影响研究
Table 5. Study on the effect of vanadium extraction tailings from vanadium titanium magnetite on the properties of phase-change thermal storage materials
原料 制备工艺 性能 参数及效果 VT+CF+PA+SA+PW 恒温浸渍法和浇注法 蓄热性 ① VT+EG+PW 熔融共混法 稳定性 ② 导电性 ③ ④ 导热性 ⑤ 注:①在三种复合材料CF+PW、CF+PA和CF+SA中分别添加2%、1.6%和0.8%的微米级VT后,材料蓄-放热时间缩短,中心处温度和最高温度的差值分别提高2.7~3.8 ℃、6.4~7.8 ℃和5~11.9 ℃;②进行60次热循环,添加VT前后,复合材料EG+PW的质量损失率由小于0.03%升高到0.08%,添加VT对材料热稳定性影响较小;③成型压力为2~8 MPa时,添加粒度小于45 µm的VT后的材料电阻率均比未添加的小,电阻率随VT添加量增加而减小,说明添加VT可以增强材料的导电性能;④成型压力从2 MPa增加到8 MPa时,电阻率下降率在49%以下,添加VT后复合材料电阻率下降率变大,添加VT可以使复合材料电阻率的压敏性提高;⑤添加1%~3%的微米级VT之后,在4 MPa下压制成型,进行60次热循环,复合材料在不同温度下热导率多数变大,添加微米级VT可以增强复合材料的导热性能。 -
[1] Sui Yulei, Guo Yufeng, Travyanov A Y, et al. Reduction roasting-magnetic separation of vanadium tailings in presence of sodium sulfate and its mechanisms[J]. Rare Met., 2016,35:954-960. doi: 10.1007/s12598-015-0616-0 [2] Yuan Rui, Li Shaolong, Che Yusi, et al. A critical review on extraction and refining of vanadium metal[J]. Int. J. Refract. H., 2021,101:105696. doi: 10.1016/j.ijrmhm.2021.105696 [3] Xiang Junyi, Huang Qingyun, Lü Wei, et al. Recovery of tailings from the vanadium extraction process by carbothermic reduction method: Thermodynamic, experimental and hazardous potential assessment[J]. J. Hazard. Mater., 2018,357:128-137. doi: 10.1016/j.jhazmat.2018.05.064 [4] Li Lanjie, Zhao Beibei, Gao Minglei, et al. Clean utilization of solid waste of vanadium chemical and metallurgy[J]. The Chinese Journal of Process Engineering, 2019,19(S1):99-108. (李兰杰, 赵备备, 高明磊, 等. 钒化工冶金固废资源化清洁利用[J]. 过程工程学报, 2019,19(增刊1):99-108.Li Lanjie, Zhao Beibei, Gao Minglei, et al. Clean utilization of solid waste of vanadium chemical and metallurgy[J]. The Chinese Journal of Process Engineering, 2019, 19(S1): 99-108. [5] Gilligan R, Nikoloski A N. The extraction of vanadium from titanomagnetites and other sources[J]. Miner. Eng., 2020,146:10610. [6] Wang Xin, Xiang Junyi, Ling Jiawei, et al. Comprehensive utilization of vanadium extraction tailings: A brief review[C]// Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies. Springer, 2020: 327-334. [7] Huo Zhihao, Wang Mei, Yue Hongrui. Technology of extracting vanadium from vanadium slag by sodium roasting and comprehensive utilization of vanadium tailings[C]//Proceedings of the 2022 Annual Science and Technology Conference of the Chinese Society of Environmental Sciences (II). Nanchang: China Agricultural University Press, 2022: 1075-1078. (霍志豪, 王梅, 岳宏瑞. 钒渣钠化焙烧提钒工艺及提钒尾渣综合利用[C]//中国环境科学学会2022年科学技术年会论文集(II). 南昌: 中国农业大学出版社, 2022: 1075-1078.Huo Zhihao, Wang Mei, Yue Hongrui. Technology of extracting vanadium from vanadium slag by sodium roasting and comprehensive utilization of vanadium tailings[C]//Proceedings of the 2022 Annual Science and Technology Conference of the Chinese Society of Environmental Sciences (II). Nanchang: China Agricultural University Press, 2022: 1075-1078. [8] Xu Chongguang, Wang Hailin, Yang Huan, et al. Comprehensive utilization of extracting vanadium tailings[J]. Ferro Alloys, 2018,49(1):40-43. (许崇光, 王海林, 杨欢, 等. 提钒尾渣的综合利用[J]. 铁合金, 2018,49(1):40-43.Xu Chongguang, Wang Hailin, Yang Huan, et al. Comprehensive utilization of extracting vanadium tailings[J]. Ferro Alloys, 2018, 49(1): 40-43. [9] Li Lanjie, Zhao Beibei, Wang Haixu, et al. The process of high efficiency dealkalization and ore blending in ironmaking of the extracted vanadium residue[J]. Chin. J. Process Eng, 2017,17(1):138-143. (李兰杰, 赵备备, 王海旭, 等. 提钒尾渣高效脱碱及配矿炼铁工艺[J]. 过程工程学报, 2017,17(1):138-143. doi: 10.12034/j.issn.1009-606X.216215Li Lanjie, Zhao Beibei, Wang Haixu, et al. The process of high efficiency dealkalization and ore blending in ironmaking of the extracted vanadium residue[J]. Chin. J. Process Eng, 2017, 17(1): 138-143. doi: 10.12034/j.issn.1009-606X.216215 [10] Guo Rui, Zhou Mi, Xie Huaqing, et al. Experimental research on preparation of ferrochrome by reducing vanadium tailings with peanut shell[J]. Sintering and Pelletizing, 2022,47(6):116-122. (郭锐, 周密, 谢华清, 等. 花生壳还原提钒尾渣制备铬铁合金的试验研究[J]. 烧结球团, 2022,47(6):116-122.Guo Rui, Zhou Mi, Xie Huaqing, et al. Experimental research on preparation of ferrochrome by reducing vanadium tailings with peanut shell[J]. Sintering and Pelletizing, 2022, 47(6): 116-122. [11] Kim E, Spooren J, Broos K, et al. Selective recovery of Cr from stainless steel slag by alkaline roasting followed by water leaching[J]. Hydrometallurgy, 2015,158:139-148. doi: 10.1016/j.hydromet.2015.10.024 [12] Zhao Qifeng, Wang Xiwen, Xia Wei, et al. Research status and prospect of vanadium sodium waste waste[C]//Proceedings of the 11th National Energy and Thermal Industry Annual Conference. Ma, anshan: Chinese Society for Metals, 2021: 515-520. (赵奇丰, 王熙文, 夏伟, 等. 钠化提钒废渣综合利用研究现状及展望[C]//第十一届全国能源与热工学术年会论文集. 马鞍山: 中国金属学会能源与热工分会, 2021: 515-520.Zhao Qifeng, Wang Xiwen, Xia Wei, et al. Research status and prospect of vanadium sodium waste waste[C]//Proceedings of the 11th National Energy and Thermal Industry Annual Conference. Ma, anshan: Chinese Society for Metals, 2021: 515-520. [13] Liu Jinsheng, Ding Xueyong, Xue Xiangxin, et al. Research progress of comprehensive utilization of vanadium extraction tailings[J]. Iron and Steel, 2021,56(7):152-160. (刘金生, 丁学勇, 薛向欣, 等. 提钒尾渣资源化综合利用的研究进展[J]. 钢铁, 2021,56(7):152-160.Liu Jinsheng, Ding Xueyong, Xue Xiangxin, et al. Research progress of comprehensive utilization of vanadium extraction tailings[J]. Iron and Steel, 2021, 56(7): 152-160. [14] Gao Feng, Du Hao, Liu Biao, et al. Study on the technology of enhanced reduction-magnetic separation of titanium and iron from calcium-based vanadium extraction tailings[J]. Iron Steel Vanadium Titanium, 2023,44(1):84-91. (高峰, 杜浩, 刘彪, 等. 钙基提钒尾渣强化还原-磁选分离钛铁技术研究[J]. 钢铁钒钛, 2023,44(1):84-91.Gao Feng, Du Hao, Liu Biao, et al. Study on the technology of enhanced reduction-magnetic separation of titanium and iron from calcium-based vanadium extraction tailings[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 84-91. [15] Wang Guang. Fundamental study on synergistic reduction of vanadium extraction tailings with high content chromium and chromite to smelt high carbon ferrochromium[D]. Chongqing: Chongqing University, 2020. (王广. 高铬型提钒尾渣与铬铁矿协同还原冶炼高碳铬铁的基础研究[D]. 重庆: 重庆大学, 2020.Wang Guang. Fundamental study on synergistic reduction of vanadium extraction tailings with high content chromium and chromite to smelt high carbon ferrochromium[D]. Chongqing: Chongqing University, 2020. [16] Liu Shiyuan, Wang Lijun, Chen Jun, et al. Research progress of vanadium extraction processes from vanadium slag: A review[J]. Sep. Purif. Technol. , 2024: 127035. [17] Zhang Ying, Zhang Ting,an, Dreisinger David, et al. Recovery of vanadium from calcification roasted-acid leaching tailing by enhanced acid leaching[J]. J. Hazard. Mater., 2019,369:632-641. doi: 10.1016/j.jhazmat.2019.02.081 [18] Li Fangfang, Wen Jing, Yu Tangxia, et al. Synergic acid leaching of vanadium from sodium vanadium extraction tailings[J/OL]. Multipurpose Utilization of Mineral Resources [2023-11-13]. https://link.cnki.net/urlid/51.1251.TD.20231110.1042.010. (李芳芳, 温婧, 余唐霞, 等. 钠化提钒尾渣协同酸浸提钒[J/OL]. 矿产综合利用 [2023-11-13]. https://link.cnki.net/urlid/51.1251.TD.20231110.1042.010.Li Fangfang, Wen Jing, Yu Tangxia, et al. Synergic acid leaching of vanadium from sodium vanadium extraction tailings[J/OL]. Multipurpose Utilization of Mineral Resources [2023-11-13]. https://link.cnki.net/urlid/51.1251.TD.20231110.1042.010. [19] Meng Lipeng, Zhao Chu, Wang Shaona, et al. Improvement of vanadium extraction from extracted vanadium residue in China[J]. Iron Steel Vanadium Titanium, 2015,36(3):49-56. (孟利鹏, 赵楚, 王少娜, 等. 国内提钒尾渣再提钒技术研究进展[J]. 钢铁钒钛, 2015,36(3):49-56.Meng Lipeng, Zhao Chu, Wang Shaona, et al. Improvement of vanadium extraction from extracted vanadium residue in China[J]. Iron Steel Vanadium Titanium, 2015, 36(3): 49-56. [20] Liu Bao, Li Jin, Ren Qianqian, et al. Leaching behavior and mineralogical evolution of vanadium released from sodium roasted-acid leaching tailing of vanadium slag[J]. J. of Iron Steel Res. Int., 2022,29(5):772-782. doi: 10.1007/s42243-021-00716-w [21] Zhang Xuefeng, Liu Fengguo, Xue Xiangxin, et al. Effects of microwave and conventional blank roasting on oxidation behavior, microstructure and surface morphology of vanadium slag with high chromium content[J]. J. Alloy. Comp., 2016,686:356-365. doi: 10.1016/j.jallcom.2016.06.038 [22] Li Wei, Fu Guiqin, Chu Mansheng, et al. Oxidation induration process and kinetics of Hongge vanadium titanium-bearing magnetite pellets[J]. Ironmak. Steelmak., 2016,44:294-303. [23] Lü Changxiao, Zhang Ting, an, Zhang Ying, et al. Comprehensive recovery of vanadium from calcification roasting-acid leaching tailings[J]. Chinese Journal of Rare Metals, 2020,44(11):1208-1214. (吕昌晓, 张廷安, 张莹, 等. 从钙化焙烧-酸浸尾渣中综合回收钒的研究[J]. 稀有金属, 2020,44(11):1208-1214.Lü Changxiao, Zhang Ting, an, Zhang Ying, et al. Comprehensive recovery of vanadium from calcification roasting-acid leaching tailings[J]. Chinese Journal of Rare Metals, 2020, 44(11): 1208-1214. [24] Rahman A, Behnam S. Recovery of vanadium from secondary tailing of iron ore by salt roasting-alkaline leaching and solvent extraction processes[J]. Iran. J. Earth Sci., 2019,11(1):30-37. [25] Wen Jin, Jiang Tao, Gao Huiyang, et al. An efficient utilization of chromium-containing vanadium tailings: Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide[J]. J. Environ. Manage., 2019,244:119-126. doi: 10.1016/j.jenvman.2019.05.037 [26] Cheng Jie, Li Hongyi, Chen Xinmian, et al. Eco-friendly chromium recovery from hazardous chromium-containing vanadium extraction tailings via low-dosage roasting[J]. Process Saf. Environ., 2022,164:818-826. doi: 10.1016/j.psep.2022.06.065 [27] Tavakolikhaledi M R. Vanadium: Leaching and solvent extraction[D]. Vancouver: University of British Columbia, 2014. [28] Du Weitong, Jiang Congxiang, Chen Zhuo, et al. Vanadium extraction by roasting from high chlorine-and-iron titanium tetrachloride tailings after vanadium removal[J]. Mining and Metallurgical Engineering, 2022,42(2):106-108. (堵伟桐, 姜丛翔, 陈卓, 等. 高氯高铁型四氯化钛除钒尾渣焙烧提钒工艺研究[J]. 矿冶工程, 2022,42(2):106-108.Du Weitong, Jiang Congxiang, Chen Zhuo, et al. Vanadium extraction by roasting from high chlorine-and-iron titanium tetrachloride tailings after vanadium removal[J]. Mining and Metallurgical Engineering, 2022, 42(2): 106-108. [29] Yu Qiang. Study on deep extraction of vanadium from calcified acid leaching tailings[D]. Chongqing: Chongqing University, 2021. (余强. 钙化酸浸提钒尾渣深度提钒的研究[D]. 重庆: 重庆大学, 2021.Yu Qiang. Study on deep extraction of vanadium from calcified acid leaching tailings[D]. Chongqing: Chongqing University, 2021. [30] Dong Mengqi. Recovery and utilization of iron resources in pressurized acid leaching residue of laterite nickel ore[D]. Kunming: Kunming University of Science and Technology, 2023. (董梦奇. 红土镍矿加压酸浸渣铁资源的回收利用[D]. 昆明: 昆明理工大学, 2023.Dong Mengqi. Recovery and utilization of iron resources in pressurized acid leaching residue of laterite nickel ore[D]. Kunming: Kunming University of Science and Technology, 2023. [31] Kolmachikhina E B, Lugovitskaya T N, Tretiak M A, et al. Surfactants and their mixtures under conditions of autoclave sulfuric acid leaching of zinc concentrate: Surfactant selection and laboratory tests[J]. Trans. Nonferrous Met. Soc. China, 2023,33:3529-3543. doi: 10.1016/S1003-6326(23)66352-6 [32] Liu Cun, Li Yun, Guo Hongfei, et al. Preparation of spherical hydroxycancrinite from potassic rocks activated by sub-molten salt[J]. Journal of Chemical Engineering of Chinese Universities, 2023,37(4):623-632. (刘存, 李雲, 郭宏飞, 等. 亚熔盐活化含钾岩石制备球形羟基钙霞石[J]. 高校化学工程学报, 2023,37(4):623-632.Liu Cun, Li Yun, Guo Hongfei, et al. Preparation of spherical hydroxycancrinite from potassic rocks activated by sub-molten salt[J]. Journal of Chemical Engineering of Chinese Universities, 2023, 37(4): 623-632. [33] Wu Enhui, Zhu Rong, Yang Shaoli, et al. Experimental and thermodynamic study on reduction of carbon-containing pellet of vanadium tailings smelted by electric arc furnace[J]. Iron Steel Vanadium Titanium, 2015,36(5):40-46. (吴恩辉, 朱荣, 杨绍利, 等. 提钒尾渣含碳球团电弧炉熔融还原热力学分析与试验[J]. 钢铁钒钛, 2015,36(5):40-46.Wu Enhui, Zhu Rong, Yang Shaoli, et al. Experimental and thermodynamic study on reduction of carbon-containing pellet of vanadium tailings smelted by electric arc furnace[J]. Iron Steel Vanadium Titanium, 2015, 36(5): 40-46. [34] Hou Jing, Wu Enhui, Li Jun. Current situation and progress of comprehensive utilization of vanadium extraction tailings[J]. Conservation and Utilization of Mineral Resources, 2017(6):103-108. (侯静, 吴恩辉, 李军. 提钒尾渣的综合利用研究现状及进展[J]. 矿产保护与利用, 2017(6):103-108.Hou Jing, Wu Enhui, Li Jun. Current situation and progress of comprehensive utilization of vanadium extraction tailings[J]. Conservation and Utilization of Mineral Resources, 2017(6): 103-108. [35] Leng Guanghui, Cao Hui, Peng Hao, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017,6(5):1058-1075. (冷光辉, 曹惠, 彭浩, 等. 储热材料研究现状及发展趋势[J]. 储能科学与技术, 2017,6(5):1058-1075.Leng Guanghui, Cao Hui, Peng Hao, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017, 6(5): 1058-1075. [36] Kuravi S, Trahan J, Yogi Goswami D, et al. Thermal energy storage technologies and systems for concentrating solar power plants[J]. Prog. Energ. Combust., 2013,39:285-319. doi: 10.1016/j.pecs.2013.02.001 [37] Xu Xiaohong, Lao Xinbin, Wu Jianfeng, et al. Synthesis and characterization of Al2O3/SiC composite ceramics via carbothermal reduction of alumino-silicate precursor for solar sensible thermal storage[J]. J. Alloys Compd., 2016,662:126-137. doi: 10.1016/j.jallcom.2015.12.038 [38] Piao Rongxun, Li Xuan, Li Guowei, et al. Preparation of high temperature sensible heat storage material from vanadium extraction tailings and graphite[J]. Iron Steel Vanadium Titanium, 2020,41(6):52-59. (朴荣勋, 李轩, 李国伟, 等. 利用提钒尾渣和石墨制备高温显热蓄热材料的研究[J]. 钢铁钒钛, 2020,41(6):52-59.Piao Rongxun, Li Xuan, Li Guowei, et al. Preparation of high temperature sensible heat storage material from vanadium extraction tailings and graphite[J]. Iron Steel Vanadium Titanium, 2020, 41(6): 52-59. [39] Piao Rongxun, Li Xuan, Ji Ying. Research and modeling on thermal conductivity of high temperature heat storage material based on vanadium tailings[J]. Iron Steel Vanadium Titanium, 2021,42(1):93-99. (朴荣勋, 李轩, 季颖. 基于提钒尾渣的高温显热蓄热材料导热性能研究及模拟[J]. 钢铁钒钛, 2021,42(1):93-99.Piao Rongxun, Li Xuan, Ji Ying. Research and modeling on thermal conductivity of high temperature heat storage material based on vanadium tailings[J]. Iron Steel Vanadium Titanium, 2021, 42(1): 93-99. [40] Hou Zongchen. Preparation and performance research on a new modified solid high-temperature sensible heat storage materials[D]. Zhejiang: Zhejiang University, 2023. (侯宗臣. 新型改性固体高温显热蓄热材料的制备与性能研究[D]. 浙江: 浙江大学, 2023.Hou Zongchen. Preparation and performance research on a new modified solid high-temperature sensible heat storage materials[D]. Zhejiang: Zhejiang University, 2023. [41] Xu Zhong, Hou Jing, Li Jun, et al. Investigation on heat storage characteristics of vanadium tailings/carbon foam/organic matter composite phase change material[J/OL]. Multipurpose Utilization of Mineral Resources, https://link.cnki.net/urlid/51.1251.TD.20231123.1039.008. (徐众, 侯静, 李军, 等. 提钒尾渣/泡沫碳/有机质复合相变材料蓄热性能[J/OL]. 矿产综合利用, https://link.cnki.net/urlid/51.1251.TD.20231123.1039.008.Xu Zhong, Hou Jing, Li Jun, et al. Investigation on heat storage characteristics of vanadium tailings/carbon foam/organic matter composite phase change material[J/OL]. Multipurpose Utilization of Mineral Resources, https://link.cnki.net/urlid/51.1251.TD.20231123.1039.008. [42] Xu Zhong, Li Jun, Wu Enhui, et al. Influence of vanadium tailings on the thermal stability and electrical conductivity of expanded graphite/paraffin composite phase change materials[J]. Chinese Journal of Applied Chemistry, 2022(3):461-469. (徐众, 李军, 吴恩辉, 等. 添加提钒尾渣对膨胀石墨/石蜡复合相变材料稳定性和导电性的影响[J]. 应用化学, 2022(3):461-469.Xu Zhong, Li Jun, Wu Enhui, et al. Influence of vanadium tailings on the thermal stability and electrical conductivity of expanded graphite/paraffin composite phase change materials[J]. Chinese Journal of Applied Chemistry, 2022(3): 461-469. [43] Xu Zhong, Hou Jing, Li Jun, et al. Influence of vanadium tailing on the thermal conductivity performance of EG/PW phase change composite material[J]. New Chemical Materials, 2021,49(5):115-119. (徐众, 侯静, 李军, 等. 提钒尾渣对膨胀石墨/石蜡复合相变材料导热性能的影响[J]. 化工新型材料, 2021,49(5):115-119.Xu Zhong, Hou Jing, Li Jun, et al. Influence of vanadium tailing on the thermal conductivity performance of EG/PW phase change composite material[J]. New Chemical Materials, 2021, 49(5): 115-119.