Research progress of targeted extraction of vanadium by functional ionic liquids
-
摘要: 溶剂萃取法是提钒最常用的分离富集方法。传统的工业萃钒方法存在萃取效果不理想、选择性差以及环境和安全方面等问题。离子液体具有宽液程、低蒸汽压不易挥发、物化性质可调、易于功能性设计、电化学窗口宽、导电性好、热稳定性高等诸多优点,可实现钒的靶向高效萃取。综述了离子液体萃取回收钒的研究进展,重点关注了咪唑类离子液体和季铵盐类离子液体的物化性质、合成方法与萃钒机理。钒的萃取机理主要包括阴离子交换和中性络合等机制,通过不同离子液体的特性,钒的萃取效率和选择性得以优化。通过对离子液体在提钒过程中的机理分析和应用案例的揭示,以期为钒提取领域的研究和应用提供参考。同时,也指出了离子液体萃取剂在成本、大规模应用等方面面临的一些挑战,需要进一步的研究和发展。Abstract: The solvent extraction method is the most commonly used technique for the separation and enrichment of vanadium. However, traditional industrial vanadium extraction methods encounter issues such as unsatisfactory extraction efficiency, poor selectivity, and environmental and safety concerns. Ionic liquids possess many advantages, including a wide liquid range, low vapor pressure, non-volatility, tunable physical and chemical properties, ease of functional design, a wide electrochemical window, good conductivity, and high thermal stability, enabling targeted and efficient extraction of vanadium. This review summarizes the research progress on the extraction and recovery of vanadium using ionic liquids, with a focus on the physical and chemical properties, synthesis methods, and extraction mechanisms of imidazolium and quaternary ammonium ionic liquids. The extraction mechanisms of vanadium mainly include anion exchange and neutral complexation, which optimize the extraction efficiency and selectivity of vanadium through the unique properties of different ionic liquids. By analyzing the mechanisms of ionic liquids in the vanadium extraction process and revealing application cases, this review aims to provide references for research and applications in the field of vanadium extraction. Additionally, it highlights the challenges faced by ionic liquid extractants in terms of cost and large-scale application, indicating that further research and development are needed.
-
图 1 合成离子液体的方法流程[33]
Figure 1. Flow chart for the synthesis of ionic liquids
图 2 [Omim]Br的反应流程[41]
Figure 2. The reaction flow chart of [Omim]Br
图 6 TOMAC萃钒原理[53]
Figure 6. Schematic illustration of the mechanism of vanadium extraction by TOMAC
表 1 常用于萃钒的离子液体类型
Table 1. Types of ionic liquids commonly used in vanadium extraction
离子液体类型 离子液体类别名称及相关化学式 阳离子 咪唑 苯并咪唑盐 铵 吡啶盐 阴离子 六氟磷酸根( Ⅴ ) 四氟硼酸根 卤素阴离子 醋酸盐 硝酸盐 2,2,2 -三氟乙酸 双离子 咪唑类
([C6mim][PF6])
([C8mim][PF6])C12H23ClN2
([Omim]Cl)
C12H23BrN2
([Omim]Br)
C12H23BF4N2
([Omim][BF4])
([Bmim]PF6)
Bmim Cl-AlCl3季铵盐类
C25H54ClN
[A336][P204]
[A336][P507]表 2 常见咪唑类和季铵盐类离子液体物理化学性质
Table 2. Physicochemical properties of imidazolium and quaternary ammonium ionic liquids
离子液体类型 名称 熔点/ ℃ 体积密度
(20 ℃)/(g·cm−3)分子量 咪唑类 [C6mim][PF6] −73.5 1.3045 312.24 [C8mim][PF6] −70 1.2345 340.29 [Omim]Cl 12 1.01 230.78 [Omim]Br −61.9 1.17 275.23 [Omim][BF4] −80 1.09 282.13 [bmim]PF6 6.5 1.38 284.18 季铵盐类 C25H54ClN −20 0.884 404.16 离子液体 钒的萃取率/% 杂质元素分离效果 萃取机理 [C8mim][PF6] 高(>90) 对Cr(VI)的选择性较低 阴离子交换:HV10O273−与PF6−之间的交换 [Omim]Cl 97.93 杂质分离效果好 阴离子交换:Cl−与HVO42−的交换 [Omim]Br 96.59 杂质分离效果好 阴离子交换:Br−与HVO42−的交换 [Omim][BF4] 87.01 杂质分离效果好 阴离子交换:BF4−与HVO42−的交换 TOMAC 98 对Fe、Al、Mg、K、P、Ca的分离系数高 阴离子交换:Cl−与多钒酸根离子的交换 [A336][NO3]或[RNH3][NO3] 高 V/Cr分离系数为35 阴离子交换:NO3−与V4O124− (或V3O93−)之间的交换 [bmim]PF6或
[bmim]Cl-AlCl3高 阴离子交换:PF6−或Cl−与钒离子之间的交换 [A336][P507] 98.53 对铁(8.46%)、铬(5.46%)的萃取率低 中性络合:P=O与V=O之间的作用力,
伴随H+和SO42−的提取[A336][P204] 77.27 杂质分离效果好,相分离快速,但有机相下层
有少量白色胶状物类似[A336][P507],中性络合 -
[1] Zhu Siqin, Ye Guohua, Kang Xuanxiong, et al. Research progress on the treatment of acid leaching vanadium wastewater from vanadium-bearing shale[J]. Water Treatment Technology, 2024,50(5):1-7. (朱思琴, 叶国华, 亢选雄, 等. 含钒页岩酸浸提钒废水处置的研究进展[J]. 水处理技术, 2024,50(5):1-7.Zhu Siqin, Ye Guohua, Kang Xuanxiong, et al. Research progress on the treatment of acid leaching vanadium wastewater from vanadium-bearing shale[J]. Water Treatment Technology, 2024, 50(5): 1-7. [2] Wu You, Chen Donghui, Liu Wuhan, et al. Global vanadium industry development report 2022[J]. Iron Steel Vanadium Titanium, 2023,44(6):1-8. (吴优, 陈东辉, 刘武汉, 等. 2022年全球钒工业发展报告[J]. 钢铁钒钛, 2023,44(6):1-8.Wu You, Chen Donghui, Liu Wuhan, et al. Global vanadium industry development report 2022[J]. Iron Steel Vanadium Titanium, 2023, 44(6): 1-8. [3] Zhang Yimin, Xue Nannan, Zheng Qiushi, et al. Research status and development of the whole industry chain utilization of vanadium shale resources[J]. China Nonferrous Metallurgy, 2023,52(5):2-17. (张一敏, 薛楠楠, 郑秋实, 等. 钒页岩资源全产业链利用研究现状及发展[J]. 中国有色冶金, 2023,52(5):2-17.Zhang Yimin, Xue Nannan, Zheng Qiushi, et al. Research status and development of the whole industry chain utilization of vanadium shale resources[J]. China Nonferrous Metallurgy, 2023, 52(5): 2-17. [4] Zhang Yimin, Xue Nannan, Liu Tao, et al. Vanadium shale wet green extraction technology[J]. Journal of China University of Mining and Technology, 2022,51(3):520-531. (张一敏, 薛楠楠, 刘涛, 等. 钒页岩全湿法绿色提取技术[J]. 中国矿业大学学报, 2022,51(3):520-531.Zhang Yimin, Xue Nannan, Liu Tao, et al. Vanadium shale wet green extraction technology[J]. Journal of China University of Mining and Technology, 2022, 51(3): 520-531. [5] Jia Li, Zhang Yimin, Liu Tao, et al. A methodology for assessing cleaner production in the vanadium extraction industry[J]. Journal of Cleaner Production, 2014,84:598-605. doi: 10.1016/j.jclepro.2013.05.016 [6] Zhang Yimin, Bao Shenxu, Liu Tao, et al. The technology of extracting vanadium from stone coal in China: History, current status and future prospects[J]. Hydrometallurgy, 2011,109:116-124. doi: 10.1016/j.hydromet.2011.06.002 [7] Xiang Xinyue, Ye Guohua, Zhu Siqin, et al. Research progress on extraction of vanadium from acid leaching solution containing vanadium[J]. Protection and Utilization of Mineral Resources, 2023,43(5):170-178. (项新月, 叶国华, 朱思琴, 等. 从含钒酸浸液中萃取提钒的研究进展[J]. 矿产保护与利用, 2023,43(5):170-178.Xiang Xinyue, Ye Guohua, Zhu Siqin, et al. Research progress on extraction of vanadium from acid leaching solution containing vanadium[J]. Protection and Utilization of Mineral Resources, 2023, 43(5): 170-178. [8] Lai Yongchuan, Yang Xinlong, Sun Jianzhi, et al. Research status of selective extraction of vanadium from acid leaching solution of vanadium-bearing shale[J]. Rare Metals, 2022,46(1):109-119. (赖永传, 杨鑫龙, 孙建之, 等. 含钒页岩酸浸液中钒的选择性萃取研究现状[J]. 稀有金属, 2022,46(1):109-119.Lai Yongchuan, Yang Xinlong, Sun Jianzhi, et al. Research status of selective extraction of vanadium from acid leaching solution of vanadium-bearing shale[J]. Rare Metals, 2022, 46(1): 109-119. [9] Zhang Yimin, Bao Shenxu. Present situation and prospect of purification and enrichment technology for vanadium-containing leaching solution[J]. Metal Mines, 2016(7):64-70. (张一敏, 包申旭. 含钒浸出液净化富集技术现状及前景[J]. 金属矿山, 2016(7):64-70.Zhang Yimin, Bao Shenxu. Present situation and prospect of purification and enrichment technology for vanadium-containing leaching solution[J]. Metal Mines, 2016(7): 64-70. [10] Zhang Ying, Zhang Ting’an. Research progress of vanadium extraction from vanadium-containing leaching solution by solvent extraction[J]. Nonferrous Metal Science and Engineering, 2017,8(5):14-20. (张莹, 张廷安. 溶剂萃取法从含钒浸出液中提钒的研究进展[J]. 有色金属科学与工程, 2017,8(5):14-20.Zhang Ying, Zhang Ting’an. Research progress of vanadium extraction from vanadium-containing leaching solution by solvent extraction[J]. Nonferrous Metal Science and Engineering, 2017, 8(5): 14-20. [11] Dan Weijie, Xiao Liansheng, Zhang Guiqing, et al. Extraction of chromium (Ⅲ) from iron (Ⅱ) by extraction[J]. Nonferrous Metal Science and Engineering, 2017,8(3):35-41. (淡维杰, 肖连生, 张贵清, 等. 萃取法提取铬(Ⅲ)分离铁(Ⅱ)的研究[J]. 有色金属科学与工程, 2017,8(3):35-41.Dan Weijie, Xiao Liansheng, Zhang Guiqing, et al. Extraction of chromium (Ⅲ) from iron (Ⅱ) by extraction[J]. Nonferrous Metal Science and Engineering, 2017, 8(3): 35-41. [12] Xu Liang. Extraction of vanadium from high concentration sulfuric acid solution[D]. Changsha: Central South University, 2013. (许亮. 从高浓度的硫酸溶液中萃取钒的研究[D]. 长沙: 中南大学, 2013.Xu Liang. Extraction of vanadium from high concentration sulfuric acid solution[D]. Changsha: Central South University, 2013. [13] Chen Ziyang, Ye Guohua, Zuo Qi, et al. Structure-activity relationship of organic amine extractants and research progress of vanadium extraction[J]. Iron Steel Vanadium Titanium, 2020,41(3):8-15. (陈子杨, 叶国华, 左琪, 等. 有机胺类萃取剂构效关系及其萃钒的研究进展[J]. 钢铁钒钛, 2020,41(3):8-15.Chen Ziyang, Ye Guohua, Zuo Qi, et al. Structure-activity relationship of organic amine extractants and research progress of vanadium extraction[J]. Iron Steel Vanadium Titanium, 2020, 41(3): 8-15. [14] Tang Yue, Ye Guohua, Zhang Hao, et al. Solvent extraction of vanadium with D2EHPA from aqueous leachate of stone coal after low–temperature sulfation roasting[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022,650:129584. doi: 10.1016/j.colsurfa.2022.129584 [15] Sun Xiaoqi, Ji Yang, Hu Fengchun, et al. The inner synergistic effect of bifunctional ionic liquid extractant for solvent extraction[J]. Talanta, 2010,81:1877-1883. doi: 10.1016/j.talanta.2010.03.041 [16] Wang Wei, Chen Ji, Liu Hongzhao, et al. Research progress of functional ionic liquids in metal extraction and separation[J]. Application Chemistry, 2015,32(7):733-742. (王威, 陈继, 刘红召, 等. 功能性离子液体在金属萃取分离中的研究进展[J]. 应用化学, 2015,32(7):733-742.Wang Wei, Chen Ji, Liu Hongzhao, et al. Research progress of functional ionic liquids in metal extraction and separation[J]. Application Chemistry, 2015, 32(7): 733-742. [17] Tang Yue, Ye Guohua, Hu Yujie, et al. Application status and development trend of ionic liquids in extraction and separation[J]. Mining and Metallurgy, 2021,30(6):54-62. (唐悦, 叶国华, 胡渝杰, 等. 离子液体在萃取分离中的应用现状与发展趋势[J]. 矿冶, 2021,30(6):54-62.Tang Yue, Ye Guohua, Hu Yujie, et al. Application status and development trend of ionic liquids in extraction and separation[J]. Mining and Metallurgy, 2021, 30(6): 54-62. [18] Yu Chen, Bao Shenxu, Zhang Yimin, et al. Separation and adsorption of V(Ⅴ) from canadium-containing solution by TOMAC-impregnated resins[J]. Chemical Engineering Research and Design, 2021,174:405-413. doi: 10.1016/j.cherd.2021.08.019 [19] Maria Atanassova. Solvent extraction of metallic species in ionic liquids: an overview of F-ions[J]. Journal of Chemical Technology & Metallurgy, 2021,56(3):433-466. [20] Pavel A Yudaev, Evgeniy M Chistyakov. Ionic liquids as components of systems for metal extraction[J]. Chem. Engineering, 2022,6(1):6. [21] Ling Yunwang, Qing Jieguo, Man Seunglee. Recent advances in metal extraction improvement: Mixture systems consisting of ionic liquid and molecular extractant[J]. Separation and Purification Technology, 2019,210:292-303. doi: 10.1016/j.seppur.2018.08.016 [22] Wu Yunyan, Zhao Yanfei, Li Ruipeng, et al. Ionic liquids promoted Ru / C catalyzed N-formylation of organic amines with CO2 / H2[J]. Chinese Science: Chemistry, 2020,50(2):299-305. (吴云雁, 赵燕飞, 李瑞鹏, 等. 离子液体促进 Ru/C 催化有机胺与 CO2/H2 氮甲酰化反应研究[J]. 中国科学: 化学, 2020,50(2):299-305.Wu Yunyan, Zhao Yanfei, Li Ruipeng, et al. Ionic liquids promoted Ru / C catalyzed N-formylation of organic amines with CO2 / H2[J]. Chinese Science: Chemistry, 2020, 50(2): 299-305. [23] Camiel H C Janssen. Prevailing mechanisms in pseudo-protic ionic liquid metal extractions[J]. Journal of Molecular Liquids, 2020,304:112738 . doi: 10.1016/j.molliq.2020.112738 [24] Sun Qian, Liu Yuanlan, Lu Jiaxing. Application of ionic liquids in electrochemistry[J]. Chemical Bulletin, 2003,66(2):113-114. (孙茜, 刘元兰, 陆嘉星. 离子液体在电化学中的应用[J]. 化学通报, 2003,66(2):113-114.Sun Qian, Liu Yuanlan, Lu Jiaxing. Application of ionic liquids in electrochemistry[J]. Chemical Bulletin, 2003, 66(2): 113-114. [25] Tsai Wanyu, Come J, Zhao Wei, et al. Hysteretic order-disorder transitions of ionic liquid double layer structure on graphite[J]. Nano Energy, 2019, 60: 886-893. [26] Sun Yinshi, Liu Zhengbo, Wang Jianhua, et al. Aqueous ionic liquid based ultrasonic assisted extraction of four acetophenones from the Chinese medicinal plant Cynanchum bungei Decne[J]. Ultrasonics Sonochemistry, 2013,20(1):180-186. doi: 10.1016/j.ultsonch.2012.07.002 [27] Hitesh Sehrawat, Neeraj Kumar, Ravi Tomar, et al. Synthesis and characterization of novel 1, 3benzodioxole tagged noscapine based ionic liquids with in silico and in vitro cytotoxicity analysis on HeLa cells[J]. Journal of Molecular Liquids, 2020,302:112525. doi: 10.1016/j.molliq.2020.112525 [28] Liu Mengying, Che Jianing, Wu Weihong, et al. Extraction of Cu2+ from aqueous solution by functional ionic liquids: Experiment and theory[J]. Acta Chimica Sinica, 2015(2):116-125. (刘梦莹, 车佳宁, 吴蔚闳, 等. 功能性离子液体萃取水溶液中 Cu2+: 试验与理论[J]. 化学学报, 2015(2):116-125.Liu Mengying, Che Jianing, Wu Weihong, et al. Extraction of Cu2+ from aqueous solution by functional ionic liquids: Experiment and theory[J]. Acta Chimica Sinica, 2015(2): 116-125. [29] Shi Jiahua, Sun Xun, Yang Chunhe, et al. Research progress of ionic liquids[J]. Chemical Bulletin, 2002,65(4):243250. (石家华, 孙逊, 杨春和, 等. 离子液体研究进展[J]. 化学通报, 2002,65(4):243250.Shi Jiahua, Sun Xun, Yang Chunhe, et al. Research progress of ionic liquids[J]. Chemical Bulletin, 2002, 65(4): 243250. [30] Shaukat Ali Mazari, Ahsan Raza Siyal, Nadeem Hussain Solangi, et al. Prediction of thermo-physical properties of 1-Butyl-3-methylimidazolium hexafluorophosphate for CO2 capture using machine learning models[J]. Journal of Molecular Liquids, 2021,327:114785. doi: 10.1016/j.molliq.2020.114785 [31] Dmitri Nikitin, Sergei Preis, Niina Dulova. Degradation of imidazolium-based ionic liquids by UV photolysis and pulsed corona discharge: The effect of persulfates addition[J]. Separation and Purification Technology, 2024,344:127235. doi: 10.1016/j.seppur.2024.127235 [32] Rajni Ratti. Ionic liquids: synthesis and applications in catalysis[J]. Adv. Chem., 2014(9):729842. [33] Sandip K Singh, Anthony W Savoy. Ionic liquids synthesis and applications: An overview[J]. Journal of Molecular Liquids, 2020,297:112038. doi: 10.1016/j.molliq.2019.112038 [34] Joan Fuller, Richard T Carlin, Robert A Osteryoung. The room temperature ionic liquid 1‐Ethyl‐3‐methylimidazolium tetrafluoroborate: Electrochemical couples and physical properties[J]. Journal of the Electrochemical Society, 1997,144:3881-3885. doi: 10.1149/1.1838106 [35] Peter Wasserscheid, Roy van Hal, Andreas Bösmann. 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate—an even “greener” ionic liquid[J]. Green Chemistry, 2002(4): 400-404. [36] Richard P Swatloski, Scott K Spear, Holbrey J D. Dissolution of cellose with ionic liquids[J]. Journal of the American Chemical Society, 2002,124(18):4974-4975. doi: 10.1021/ja025790m [37] Chu Xuemei, Hu Yufeng, Li Jiguang, et al. Desulfurization of diesel fuel by extraction with [BF4]−-based ionic liquids[J]. Chinese Journal of Chemical Engineering, 2008,16(6):881-884. doi: 10.1016/S1004-9541(09)60010-0 [38] Li Jiguang, Hu Yufeng, Chu Hongda, et al. Thermodynamic properties of [C6mim] [PF6] and [C8mim] [PF6][J]. Journal of Natural Science, Heilongjiang University, 2009,26(5):674-678. (李吉广, 胡玉峰, 褚洪达, 等. 离子液体[C6mim][PF6]和[C8mim][PF6]的热力学性质研究[J]. 黑龙江大学自然科学学报, 2009,26(5):674-678.Li Jiguang, Hu Yufeng, Chu Hongda, et al. Thermodynamic properties of [C6mim] [PF6] and [C8mim] [PF6][J]. Journal of Natural Science, Heilongjiang University, 2009, 26(5): 674-678. [39] Wu Peiwen, Xun Suhang, Jiang Wei, et al. Research progress of ionic liquid reactive extraction fuel desulfurization[J]. Journal of Chemical Industry, 2021,72(1):276-291. (吴沛文, 荀苏杭, 蒋伟, 等. 离子液体反应型萃取燃油脱硫研究进展[J]. 化工学报, 2021,72(1):276-291.Wu Peiwen, Xun Suhang, Jiang Wei, et al. Research progress of ionic liquid reactive extraction fuel desulfurization[J]. Journal of Chemical Industry, 2021, 72(1): 276-291. [40] Peng Xuelian. Preparation of supported polyoxometalate-ionic liquid catalyst and its oxidative desulfurization performance[D]. Wuhan: Wuhan University of Engineering, 2023. (彭雪连. 负载型多金属氧酸盐-离子液体催化剂的制备及其氧化脱硫性能研究[D]. 武汉: 武汉工程大学, 2023.Peng Xuelian. Preparation of supported polyoxometalate-ionic liquid catalyst and its oxidative desulfurization performance[D]. Wuhan: Wuhan University of Engineering, 2023. [41] Sen Nirvik, Singh K K, Mukhopadhyay S. Solvent-free flow synthesis of [OMIM]Br in a microreactor[J]. Chemical Engineering and Processing - Process Intensification, 2021, 166: 108431. [42] Wang Jiaqi. Environmental impact assessment of ionic liquid gas separation process based on full life cycle[D]. Beijing: Beijing University of Technology, 2022. (王佳琪. 基于全生命周期的离子液体气体分离过程环境影响评价[D]. 北京: 北京工业大学, 2022.Wang Jiaqi. Environmental impact assessment of ionic liquid gas separation process based on full life cycle[D]. Beijing: Beijing University of Technology, 2022. [43] Wang Jiaqi, Dai Chengna, Yu Gangqiang, et al. Technology-environmental assessment of imidazolium ionic liquids for natural gas dehydration[J]. Environmental Engineering, 2022,40(11):199-210. (王佳琪, 代成娜, 于刚强, 等. 咪唑基离子液体用于天然气脱水过程中的技术-环境评价[J]. 环境工程, 2022,40(11):199-210.Wang Jiaqi, Dai Chengna, Yu Gangqiang, et al. Technology-environmental assessment of imidazolium ionic liquids for natural gas dehydration[J]. Environmental Engineering, 2022, 40(11): 199-210. [44] Zhang Nan, Deng Tianlong, Liu Mingming, et al. Synthesis and physicochemical properties of ionic liquids [Bmim]Br and [Bmim]PF6[J]. Tianjin: Journal of Tianjin University of Science and Technology, 2014,29(5):42-47. (张楠, 邓天龙, 刘明明, 等. 离子液体[Bmim]Br和[Bmim]PF6的合成及其物化性质研究[J]. 天津: 天津科技大学学报, 2014,29(5):42-47.Zhang Nan, Deng Tianlong, Liu Mingming, et al. Synthesis and physicochemical properties of ionic liquids [Bmim]Br and [Bmim]PF6[J]. Tianjin: Journal of Tianjin University of Science and Technology, 2014, 29(5): 42-47. [45] Swapnil A Padvi, Yogesh A Tayade, Yogesh B Wagh, et al. [Bmim]OH: An efficient catalyst for the synthesis of mono and bis spirooxindole derivatives in ethanol at room temperature[J]. Chinese Chemical Letters, 2016,27(5):714-720. doi: 10.1016/j.cclet.2016.01.016 [46] Fan Mingming, Zhang Pingbo. Activated carbon supported K2CO3 catalysts for transesterification of dimethyl carbonate with propyl alcohol[J]. Energy & Fuels, 2007,21(2):633-635. [47] Parida K, Dash S, Singha S. Structural properties and catalytic activity of Mn-MCM-41 mesoporous molecular sieves for single-step amination of benzene to aniline[J]. Applied Catalysis A-General, 2008,351(1):59-67. doi: 10.1016/j.apcata.2008.08.027 [48] Luo Dashuang. Study on the efficient selective extraction of vanadium from shale acid leaching solution by trioctylmethylammonium chloride[D]. Wuhan: Wuhan University of Science and Technology, 2021. (罗大双. 三辛基甲基氯化铵高效选择萃取页岩酸浸液中钒的研究[D]. 武汉: 武汉科技大学, 2021.Luo Dashuang. Study on the efficient selective extraction of vanadium from shale acid leaching solution by trioctylmethylammonium chloride[D]. Wuhan: Wuhan University of Science and Technology, 2021. [49] Hu Yibo, Zhang Yimin, Xue Nannan, et al. Nφ−pH diagrams and kinetics of V2O3 prepared by solution-phase hydrogen reduction[J]. Transactions of Nonferrous Metals Society of China, 2022,32(4):1290-1300. doi: 10.1016/S1003-6326(22)65874-6 [50] Gao Qiang. Experimental study on the synthesis method of iron vanadate[D]. Shenyang: Northeastern University, 2013. (高蔷. 钒酸铁合成方法的实验研究[D]. 沈阳: 东北大学, 2013.Gao Qiang. Experimental study on the synthesis method of iron vanadate[D]. Shenyang: Northeastern University, 2013. [51] Hu Qiaoyu, Zhao Junmei, Wang Fuchun, et al. Selective extraction of vanadium from chromium by pure [C8mim][PF6]: An anion exchange process[J]. Separation and Purification Technology, 2014,131:94-101. doi: 10.1016/j.seppur.2014.05.003 [52] He Jingui, Tao Wenju, Dong Guozhen. Study on extraction performance of vanadium (Ⅴ) from aqueous solution by octyl-imidazole ionic liquids extractants[J]. Metals, 2022,12:854. doi: 10.3390/met12050854 [53] Zhang Fengzhen, Zhang Huanhuan, Zhang Wei, et al. Kinetics of ultrasound-assisted solvent extraction of vanadium with methyltrioctylammonium chloride (MAC)[J]. Hydrometallurgy, 2023,221:106142. doi: 10.1016/j.hydromet.2023.106142 [54] Bal Y, Bal K E, Cote G. Kinetics of the alkaline stripping of vanadium(Ⅴ) previously extracted by Aliquat 336[J]. Minerals Engineering, 2002,15:377-379. doi: 10.1016/S0892-6875(02)00044-4 [55] Jia Lanbo. Experimental study on vanadium extraction from acid leaching solution of vanadium slag[D]. Tangshan: North China University of Science and Technology, 2022. (贾蓝波. 钒渣酸浸液萃取提钒试验研究[D]. 唐山: 华北理工大学, 2022.Jia Lanbo. Experimental study on vanadium extraction from acid leaching solution of vanadium slag[D]. Tangshan: North China University of Science and Technology, 2022. [56] Li Ruxiong, Wang Jianji. Synthesis and application of ionic liquids[J]. Chemical Reagents, 2001(4):211-215. (李汝雄, 王建基. 离子液体的合成与应用[J]. 化学试剂, 2001(4):211-215. doi: 10.3969/j.issn.0258-3283.2001.04.008Li Ruxiong, Wang Jianji. Synthesis and application of ionic liquids[J]. Chemical Reagents, 2001(4): 211-215. doi: 10.3969/j.issn.0258-3283.2001.04.008 [57] Wang Liupei, Zhang Guiqing, Guan Wenjuan. Complete removal of trace vanadium from ammonium tungstate solutions by solvent extraction[J]. Hydrometallurgy, 2018,179:268-273. doi: 10.1016/j.hydromet.2018.06.016 [58] Zhao Junmei, Hu Qiaoyu, Li Yingbo, et al. Efficient separation of vanadium from chromium by a novel ionic liquid-based synergistic extraction strategy[J]. Chemical Engineering Journal, 2015,264:487-496. doi: 10.1016/j.cej.2014.11.071