留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活化剂强化钛精矿酸浸过程研究

王海波 龙涛 向龙 李礼 田从学

王海波, 龙涛, 向龙, 李礼, 田从学. 活化剂强化钛精矿酸浸过程研究[J]. 钢铁钒钛, 2024, 45(6): 28-33. doi: 10.7513/j.issn.1004-7638.2024.06.004
引用本文: 王海波, 龙涛, 向龙, 李礼, 田从学. 活化剂强化钛精矿酸浸过程研究[J]. 钢铁钒钛, 2024, 45(6): 28-33. doi: 10.7513/j.issn.1004-7638.2024.06.004
Wang Haibo, Long Tao, Xiang Long, Li Li, Tian Congxue. Research on activator enhanced acid leaching process of titanium concentrate[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 28-33. doi: 10.7513/j.issn.1004-7638.2024.06.004
Citation: Wang Haibo, Long Tao, Xiang Long, Li Li, Tian Congxue. Research on activator enhanced acid leaching process of titanium concentrate[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 28-33. doi: 10.7513/j.issn.1004-7638.2024.06.004

活化剂强化钛精矿酸浸过程研究

doi: 10.7513/j.issn.1004-7638.2024.06.004
基金项目: 钒钛资源综合利用产业技术创新战略联盟协同项目(PGWX2023021)。
详细信息
    作者简介:

    王海波,1985年出生,湖南邵阳人,硕士研究生,高级工程师,从事钛资源及硫酸法钛白副废综合利用方面研究,E-mail:15273187604@163.com

    通讯作者:

    李礼,1984年出生,女,四川泸州人,副教授,博士,研究方向为化工过程强化,纳米材料,E-mail:chenlili@cqut.edu.cn

  • 中图分类号: TF823,TQ630.9

Research on activator enhanced acid leaching process of titanium concentrate

  • 摘要: 针对硫酸法钛白生产中反应酸浓度较高导致不能实现硫酸平衡的问题,通过引入活化剂强化酸解反应过程,降低反应酸浓度。研究了活化剂对钛精矿低浓度酸浸的强化作用,考察了反应酸浓度和活化剂加量对反应温度和钛浸出率的影响。结果表明:活化剂的加入,可以增加反应放热量,提高反应温度,并改善固相物的疏松度,浸出活性更高;活化剂加量为0.5%、酸矿比为1.56∶1,反应酸浓度为80%的条件下,钛精矿的钛浸出率达到93.47%;酸浸残渣主要成分为TiFeO3、Ca(Fe, Mg)Si2O6和SiO2,表明原料中的钛大部分被转移到液相中。
  • 图  1  不同反应酸浓度下的钛浸出率

    Figure  1.  Effect of acid concentration on Ti leaching rate

    (a)50%;(b)60%;(c)70%;(d)80%

    图  2  酸矿比对最高反应温度和Ti浸出率的影响

    Figure  2.  Effect of acid-to-ore ratio on the maximum reaction temperature and Ti leaching rate

    图  3  活化剂添加量对最高反应温度、钛浸出率及膨胀体积的影响

    Figure  3.  Effect of activator addition on the maximum reaction temperature, Ti leaching rate and expansion volume

    图  4  反应酸浓度对最高反应温度、膨胀体积及钛浸出率的影响

    Figure  4.  Effect of acid concentration on the maximum reaction temperature, expansion volume and Ti leaching rate

    图  5  钛精矿和酸浸残渣的XRD谱

    (a)钛精矿;(b)未加活化剂酸浸残渣;(c)加活化剂酸浸残渣

    Figure  5.  XRD patterns of titanium concentrate and acid leaching residue

    图  6  酸浸残渣SEM和EDS分析

    (a)(b) 未加活化剂酸浸残渣;(c)(d)加活化剂酸浸残渣

    Figure  6.  SEM and EDS analysis of acid leaching residue

    表  1  不同废酸浓度下酸平衡时的反应酸浓度

    Table  1.   Reaction acid concentrations at acid equilibrium under different wasts acid concentration

    酸矿比 不同废酸浓度(%)下反应酸浓度/%
    20 30 40 45 50 55 60
    1.52 47.32 60.40 70.09 74.0 77.56 80.68 83.48
    1.53 47.48 60.56 70.22 74.17 77.66 80.77 83.56
    1.54 47.64 60.71 70.35 74.29 77.77 80.86 83.64
    1.55 47.80 60.86 70.48 74.40 77.87 80.96 83.72
    1.56 47.96 61.00 70.61 74.52 77.97 81.05 83.80
    下载: 导出CSV

    表  2  不同反应酸浓度下酸浸反应参数

    Table  2.   Acid leaching reaction parameters under different reaction acid concentrations

    反应酸浓度/%沸点/ ℃最高反应温度/ ℃
    50124119
    60141.8128
    70162.2138
    80200169
    84221.3179
    下载: 导出CSV

    表  3  酸浸残渣成分分析

    Table  3.   Compositions of acid hydrolysis residue %

    成分SiO2Fe2O3MgOSTiO2CaOMnOCr2O3
    未加活化剂1.7520.770.724.6531.611.090.320.67
    活化剂加量0.5%3.6912.310.446.4121.702.850.100.07
    下载: 导出CSV
  • [1] Bi Sheng. Status, future and development of China’s titanium dioxide industry in 2023[J]. Iron Steel Vanadium Titanium, 2024,45(1):1-3. (毕胜. 2023年中国钛白粉行业的现状、未来及发展[J]. 钢铁钒钛, 2024,45(1):1-3. doi: 10.7513/j.issn.1004-7638.2024.01.001

    Bi Sheng. Status, future and development of China’s titanium dioxide industry in 2023[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 1-3. doi: 10.7513/j.issn.1004-7638.2024.01.001
    [2] Wang Haibo, Sun Ke. Study on concentration process of titanium white waste acid by sulfuric acid method[J]. Iron Steel Vanadium Titanium, 2023,44(5):116-121. (王海波, 孙科. 硫酸法钛白废酸浓缩工艺研究[J]. 钢铁钒钛, 2023,44(5):116-121. doi: 10.7513/j.issn.1004-7638.2023.05.018

    Wang Haibo, Sun Ke. Study on concentration process of titanium white waste acid by sulfuric acid method[J]. Iron Steel Vanadium Titanium, 2023, 44(5): 116-121. doi: 10.7513/j.issn.1004-7638.2023.05.018
    [3] Xu Bowen, Zhang Tao, Li Lv, et al. Analysis of the composition and formation mechanism of fouling in the concentration process of titanium white waste acid[J]. Industrial & Engineering Chemistry Research, 2023,62(23):9325-9334.
    [4] Wang Haibo, Wang Kui, Sun Ke, et al. Cause analysis of blockage in heat exchanger of titanium white waste acid concentration by sulfuric acid method[J]. Iron Steel Vanadium Titanium, 2021,42(5):115-119. (王海波, 王奎, 孙科, 等. 硫酸法钛白废酸浓缩换热器堵塞成因分析[J]. 钢铁钒钛, 2021,42(5):115-119. doi: 10.7513/j.issn.1004-7638.2021.05.018

    Wang Haibo, Wang Kui, Sun Ke, et al. Cause analysis of blockage in heat exchanger of titanium white waste acid concentration by sulfuric acid method[J]. Iron Steel Vanadium Titanium, 2021, 42(5): 115-119. doi: 10.7513/j.issn.1004-7638.2021.05.018
    [5] Wang Minghua, Du Xinghong, Sui Zhitong. Kinetics of acidolysis of rich titanium concentrate by H2SO4[J]. The Chinese Journal of Nonferrous Metals, 2001,11(1):131-134. (王明华, 都兴红, 隋智通. H2SO4分解富钛精矿的反应动力学[J]. 中国有色金属学报, 2001,11(1):131-134. doi: 10.3321/j.issn:1004-0609.2001.01.029

    Wang Minghua, Du Xinghong, Sui Zhitong. Kinetics of acidolysis of rich titanium concentrate by H2SO4[J]. The Chinese Journal of Nonferrous Metals, 2001, 11(1): 131-134. doi: 10.3321/j.issn:1004-0609.2001.01.029
    [6] Maciej Jabłoński, Sandra Tylutka. The influence of initial concentration of sulfuric acid on the degree of leaching of the main elements of ilmenite raw materials[J]. J. Therm Anal Calorim, 2015, 124:355-361.
    [7] Du Jun, Li Chun, Yuan Shaojun, et al. A coupling process of mechanical activation and acid digestion of ilmenite[J]. Chemical Reaction Engineering and Technology, 2014,30(4):321-328. (杜均, 李春, 袁绍军, 等. 钛铁矿机械活化-稀酸酸解反应耦合[J]. 化学反应工程与工艺, 2014,30(4):321-328.

    Du Jun, Li Chun, Yuan Shaojun, et al. A coupling process of mechanical activation and acid digestion of ilmenite[J]. Chemical Reaction Engineering and Technology, 2014, 30(4): 321-328.
    [8] Wang Xiaomei, Li Chun,Yue Hairong, et al. Effects of mechanical activation on the digestion of ilmenite in dilute H2SO4[J]. Chinese Journal of Chemical Engineering, 2019,27:575-586. doi: 10.1016/j.cjche.2018.06.020
    [9] Wu Jianchun, Lu Ruifang, Shi Ruicheng. Study on the acidolysis properties of titanium ore recovered from acidolysis residue[J]. Iron Steel Vanadium Titanium, 2021,42(3):37-43. (吴健春, 路瑞芳, 石瑞成. 酸解残渣回收矿的酸解性能研究[J]. 钢铁钒钛, 2021,42(3):37-43. doi: 10.7513/j.issn.1004-7638.2021.03.006

    Wu Jianchun, Lu Ruifang, Shi Ruicheng. Study on the acidolysis properties of titanium ore recovered from acidolysis residue[J]. Iron Steel Vanadium Titanium, 2021, 42(3): 37-43. doi: 10.7513/j.issn.1004-7638.2021.03.006
    [10] Nayl A A, Awwad N S, AlyH F. Kinetics of acid leaching of ilmenite decomposed by KOH Part 2. Leaching by H2SO4 and C2H2O4[J]. Journal of Hazardous Materials, 2009,168:793-799. doi: 10.1016/j.jhazmat.2009.02.076
    [11] Liu Qingsheng, Tu Tao, Guo Hao, et al. Complexation extraction of scheelite and transformation behavior of tungsten-containing phase using H2SO4 solution with H2C2O4 as complexing agent[J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3150-3161.
    [12] Wu Aixiang, Ai Chunming, Wang Yiming, et al. Influence of surfactant on permeability of heap leaching of copper ore[J]. Journal of Central South University (Science and Technology), 2014,45(3):895-901. (吴爱祥, 艾纯明, 王贻明, 等. 表面活性剂对铜矿石堆浸渗透性的影响[J]. 中南大学学报(自然科学版), 2014,45(3):895-901.

    Wu Aixiang, Ai Chunming, Wang Yiming, et al. Influence of surfactant on permeability of heap leaching of copper ore[J]. Journal of Central South University (Science and Technology), 2014, 45(3): 895-901.
    [13] Tian Hong, Ma Mengyu, Ye Hengpeng, et al. Leaching of manganese from low-grade manganese ore using sulfuric acid with synthesized atmospheric surfactant[J]. Hydrometallurgy of China, 2021, 40(4): 272-277. (田鸿, 马梦雨, 叶恒朋, 等. 用两性表面活性剂辅助浸出低品位锰矿石中的锰[J]. 湿法冶金, 2021, 40(4): 272-277.

    Tian Hong, Ma Mengyu, Ye Hengpeng, et al. Leaching of manganese from low-grade manganese ore using sulfuric acid with synthesized atmospheric surfactant[J]. Hydrometallurgy of China, 2021, 40(4): 272-277.
    [14] YB/T 159.1-2015. Titanium concentrate (rock minerals)- Determination of titanium dioxide content- The ferric ammonium sulfate titrimetric method[S]. Beijin: Metallurgical industry press, 2015. (YB/T 159.1-2015 .钛精矿(岩矿)二氧化钛含量的测定 硫酸铁铵滴定法[S]. 北京: 冶金工业出版社, 2015.

    YB/T 159.1-2015. Titanium concentrate (rock minerals)- Determination of titanium dioxide content- The ferric ammonium sulfate titrimetric method[S]. Beijin: Metallurgical industry press, 2015.
    [15] Ma Weiping. Research on acidolysis of Panxin titanium concentrate with sulfuric acid[J]. Inorganic Chemicals Industry, 2013,45(5):24-26. (马维平. 硫酸酸解攀西钛精矿技术研究[J]. 无机盐工业, 2013,45(5):24-26. doi: 10.3969/j.issn.1006-4990.2013.05.008

    Ma Weiping. Research on acidolysis of Panxin titanium concentrate with sulfuric acid[J]. Inorganic Chemicals Industry, 2013, 45(5): 24-26. doi: 10.3969/j.issn.1006-4990.2013.05.008
    [16] Maciej Jabłoński, Sandra Tylutka. The influence of initial concentration of sulfuric acid on the degree of leaching of the main elements of ilmenite raw materials[J]. J Therm Anal Calorim, 2016,124:355-361. doi: 10.1007/s10973-015-5114-y
    [17] Wang Haibo, Wu Xiaoping, Gao Jian, et al. Kinetics of sulfuric acid leaching of ilmenite[J]. Iron Steel Vanadium Titanium, 2020,41(6):6-10. (王海波, 吴小平, 高健, 等. 硫酸浸取钛铁矿动力学研究[J]. 钢铁钒钛, 2020,41(6):6-10. doi: 10.7513/j.issn.1004-7638.2020.06.002

    Wang Haibo, Wu Xiaoping, Gao Jian, et al. Kinetics of sulfuric acid leaching of ilmenite[J]. Iron Steel Vanadium Titanium, 2020, 41(6): 6-10. doi: 10.7513/j.issn.1004-7638.2020.06.002
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  19
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-04
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回