留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从提钒尾液制备磷酸锰铁锂正极材料的研究

李智宇 汤婷 王正豪 陈良 朱英明 吴可荆 罗冬梅

李智宇, 汤婷, 王正豪, 陈良, 朱英明, 吴可荆, 罗冬梅. 从提钒尾液制备磷酸锰铁锂正极材料的研究[J]. 钢铁钒钛, 2024, 45(6): 19-27. doi: 10.7513/j.issn.1004-7638.2024.06.003
引用本文: 李智宇, 汤婷, 王正豪, 陈良, 朱英明, 吴可荆, 罗冬梅. 从提钒尾液制备磷酸锰铁锂正极材料的研究[J]. 钢铁钒钛, 2024, 45(6): 19-27. doi: 10.7513/j.issn.1004-7638.2024.06.003
Li Zhiyu, Tang Ting, Wang Zhenghao, Chen Liang, Zhu Yingming, Wu Kejing, Luo Dongmei. Preparation of lithium manganese iron phosphate cathode material from vanadium tailings[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 19-27. doi: 10.7513/j.issn.1004-7638.2024.06.003
Citation: Li Zhiyu, Tang Ting, Wang Zhenghao, Chen Liang, Zhu Yingming, Wu Kejing, Luo Dongmei. Preparation of lithium manganese iron phosphate cathode material from vanadium tailings[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 19-27. doi: 10.7513/j.issn.1004-7638.2024.06.003

从提钒尾液制备磷酸锰铁锂正极材料的研究

doi: 10.7513/j.issn.1004-7638.2024.06.003
基金项目: 国家自然科学基金(51774205)。
详细信息
    作者简介:

    李智宇,1999年出生,男,云南昭通人,硕士研究生,主要从事钒铬资源清洁生产技术研究,E-mail:1025725647@qq.com

    通讯作者:

    罗冬梅,1969年出生,女,博士,教授,主要从事资源回收和储能材料开发等研究,E-mail:dmluo@scu.edu.cn

  • 中图分类号: TF841.3,TM911

Preparation of lithium manganese iron phosphate cathode material from vanadium tailings

  • 摘要: 以钒渣提钒过程中产生的富含铁锰的浸出液为原料,通过共沉淀法制备了二水草酸铁锰Mn0.5Fe0.5C2O4∙2H2O,以此为前驱体,通过高温固相法成功合成了磷酸锰铁锂LiFe0.5Mn0.5PO4正极材料,实现了钒渣浸出液中铁锰资源的综合利用。结果表明,在初始pH值为3.5,温度25 ℃,反应时间90 min,草酸铵加料量为理论值的1.1倍,加料方式为正加的条件下,铁和锰的沉淀率分别为99.5%和99.4%,与其他杂质实现深度分离,Mn0.5Fe0.5C2O4·2H2O的纯度达99.97%,且粒径较小,分散性良好。可将其作为合成磷酸锰铁锂正极材料的前驱体,为磷酸锰铁锂的工业化生产提供了思路。
  • 图  1  (a)不同pH值对铁、锰、钒、铬沉淀率的影响;不同pH值(b)3.0;(c)3.5;(d)4.0;(e)4.5的SEM形貌

    Figure  1.  (a) Effect of reaction pH on the precipitation efficiency of Fe, Mn, V and Cr; SEM images of co-precipitation products at different pH (b) 3.0, (c) 3.5, (d) 4.0, (e) 4.5

    图  2  (a)不同温度对铁、锰、钒、铬沉淀率的影响;不同温度(b)25 ℃;(c)35 ℃;(d)45 ℃;(e)55 ℃的SEM形貌

    Figure  2.  (a) Effect of temperature on the precipitation efficiency of Fe, Mn, V and Cr; SEM images of different temperatures (b) 25 ℃, (c) 35 ℃, (d) 45 ℃, and (e) 55 ℃

    图  3  (a)反应时间对铁、锰、钒、铬沉淀率的影响;不同反应时间(b)0.5 h;(c)1 h;(d)1.5 h;(e)2 h的SEM形貌

    Figure  3.  (a) Effect of reaction time on the precipitation efficiency of Fe, Mn, V and Cr; SEM images of different reaction times (b) 0.5 h, (c) 1 h, (d) 1.5 h, (e) 2 h

    图  4  草酸铵加料量对铁、锰、钒、铬沉淀率的影响

    Figure  4.  Effect of (NH4)2C2O4 addition on the precipitation efficiency of Fe, Mn, V and Cr

    图  5  (a)加料方式对铁、锰、钒、铬沉淀率的影响;不同加料方式: (b)正加;(c)并加;(d)反加产物的SEM形貌

    Figure  5.  (a) Effect of addition methods on the precipitation efficiency of Fe, Mn, V, Cr; SEM images of different addition modes (b) forward addition, (c) parallel addition, (d) reverse addition

    图  6  加料方式对共沉淀产物粒度的影响

    Figure  6.  Effect of addition method on the particle sizes of co-precipitation products

    图  7  最佳条件共沉淀产物的XRD谱

    Figure  7.  XRD pattern of co-precipitation products under optimum conditions

    图  8  最佳条件共沉淀产物的SEM-EDS谱

    (a)SEM形貌;(b)图8(a)中A区的EDS元素含量;(c)沉淀产物中元素Fe, Mn, V和Cr的分布

    Figure  8.  SEM-EDS profiles of co-precipitated products under optimum conditions

    图  9  (a)LiMn0.5Fe0.5PO4的XRD谱;(b)LiMn0.5Fe0.5PO4的SEM形貌;(c)LiMn0.5Fe0.5PO4的倍率性能;(d)LiMn0.5Fe0.5PO4在0.1C倍率下的循环性能

    Figure  9.  (a) XRD patterns of LiMn0.5Fe0.5PO4, (b) SEM images of LiMn0.5Fe0.5PO4, (c) Rate performance of the LiMn0.5Fe0.5PO4, (d) Cycle performance of the LiMn0.5Fe0.5PO4 at 0.1C

    表  1  溶液中主要元素及其含量

    Table  1.   Major elemental contents in the solution g·L−1

    Fe Mn V Cr
    25.21 5.13 0.26 0.24
    下载: 导出CSV

    表  2  不同加料方式共沉淀产物的粒度

    Table  2.   Particle sizes of co-precipitation products with different addition methods

    加料方式D10/μmD50/μmD90/μm
    正加2.897.5717.32
    并加10.5726.6646.31
    反加12.1441.8762.46
    下载: 导出CSV

    表  3  沉淀产物的组成

    Table  3.   Compositions of the precipitation product %

    Fe Mn V Cr
    49.94 50.03 0.03 <0.01
    下载: 导出CSV
  • [1] Schmuch Richard, Wagner Ralf, Hörpel Gerhard, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018,3(4):267-278. doi: 10.1038/s41560-018-0107-2
    [2] Wang Yanqiang, Ke Junxiong, Wang Biao, et al. Research progress of ferromanganese phosphate precursors[J]. Chemical Management, 2023(25):138-141. (王彦强, 柯君雄, 王镖, 等. 磷酸锰铁前驱体的研究进展[J]. 化工管理, 2023(25):138-141.

    Wang Yanqiang, Ke Junxiong, Wang Biao, et al. Research progress of ferromanganese phosphate precursors[J]. Chemical Management, 2023(25): 138-141.
    [3] Franky E, Lora Bedoya, Victoria Salgado, et al. Stable V-doped LiMnPO4/C cathode material for Li-ion batteries produced by a fast and facile microwave-assisted synthesis[J]. Journal of Alloys and Compounds, 2023,938:53-61.
    [4] Said Oukahou, Mohammad Maymoun, Abdelali Elomrani, et al. Enhancing the electrochemical performance of olivine LiMnPO4 as cathode materials for Li-ion batteries by Ni-Fe codoping[J]. ACS Applied Energy Materials, 2022, 5(9): 10591-10603.
    [5] Du Hao, Kang Yuqiong, Li Chenglei, et al. Easily recyclable lithium-ion batteries: Recycling-oriented cathode design using highly soluble LiFeMnPO4 with a water-soluble binder[J]. Battery Energy, 2023,2(4):20230011.
    [6] Li Jing, Qin Yuanbin, Ning Xiaohui, et al. Improved preparation of lithium manganese iron phosphate cathode materials by high-temperature solid-phase method[J]. Materials Guide, 2020,34(16):16001-16005. (李晶, 秦元斌, 宁晓辉, 等. 改进高温固相法制备磷酸锰铁锂正极材料[J]. 材料导报, 2020,34(16):16001-16005. doi: 10.11896/cldb.19070270

    Li Jing, Qin Yuanbin, Ning Xiaohui, et al. Improved preparation of lithium manganese iron phosphate cathode materials by high-temperature solid-phase method[J]. Materials Guide, 2020, 34(16): 16001-16005. doi: 10.11896/cldb.19070270
    [7] Liu Hongyu, Ren Li, Li Jiashen, et al. Iron-assisted carbon coating strategy for improved electrochemical LiMn0.8Fe0.2PO4 cathodes[J]. Electrochimica Acta, 2016,212:800-807. doi: 10.1016/j.electacta.2016.07.049
    [8] Zhu Bo, Wang Yajing, Wang Yanming, et al. Synthesis of LiMn1- xFe xPO4 nanosheets by solvothermal method and their electrochemical properties[J]. Journal of Artificial Crystals, 2016,45(7):1826-1831. (朱波, 王雅静, 汪燕鸣, 等. 溶剂热法合成LiMn1- xFe xPO4纳米片及其电化学性能[J]. 人工晶体学报, 2016,45(7):1826-1831. doi: 10.3969/j.issn.1000-985X.2016.07.020

    Zhu Bo, Wang Yajing, Wang Yanming, et al. Synthesis of LiMn1-xFexPO4 nanosheets by solvothermal method and their electrochemical properties[J]. Journal of Artificial Crystals, 2016, 45(7): 1826-1831. doi: 10.3969/j.issn.1000-985X.2016.07.020
    [9] Lü Wei, Cai Wenlong, Wang Tuan, et al. Thermodynamic equilibrium theory-guided design and synthesis of Mg-doped LiFe0.4Mn0.6PO4/C cathode for lithium-ion batteries[J]. Journal of Energy Chemistry, 2023,9(1):619-627.
    [10] Yue Yang, Sun Miaomiao, Yu Wenhao, et al. Recovering Fe, Mn and Li from LiMn1- xFe xPO4 cathode material of spent lithium-ion battery by gradient precipitation[J]. Sustainable Materials and Technologies, 2023,36:1016-1026.
    [11] Wang Zhenghao, Chen Liang, Yang Ke, et al. Exploration of a novel vanadium source for the synthesis of a Na3V2(PO4)3 cathode of sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2024,12(5):1973-1983.
    [12] Wang Zhenghao, Chen Liang, Qin Zhifeng, et al. A green and efficient route for simultaneous recovery of low valence of vanadium and chromium, titanium and iron from vanadium slag[J]. Resources, Conservation Recycling, 2022,178:106046. doi: 10.1016/j.resconrec.2021.106046
    [13] Yin Rentao, Chen Liang, Qin Zhifeng, et al. A novel complexation method for separation and recovery of low valence vanadium, iron and chromium from sulfuric acid solution[J]. Journal of Cleaner Production, 2022,373:133640. doi: 10.1016/j.jclepro.2022.133640
    [14] Wang Zhenghao, Chen Liang, Yin Rentao, et al. Preparation of vanadyl sulfate electrolyte for vanadium flow battery from vanadium slag using calcium salt precipitation, sodium carbonate leaching and solvent extraction[J]. Hydrometallurgy, 2023,222:106146. doi: 10.1016/j.hydromet.2023.106146
    [15] Zhou Weihua, Li Zhenqin, Duan Meng, et al. Study on complexation and iron removal in vanadium slag leach solution[J]. Iron and Steel Vanadium and Titanium, 2016,37(5):20-24. (周维华, 李振溱, 段猛, 等. 钒渣浸出液中络合除铁的研究[J]. 钢铁钒钛, 2016,37(5):20-24. doi: 10.7513/j.issn.1004-7638.2016.05.004

    Zhou Weihua, Li Zhenqin, Duan Meng, et al. Study on complexation and iron removal in vanadium slag leach solution[J]. Iron and Steel Vanadium and Titanium, 2016, 37(5): 20-24. doi: 10.7513/j.issn.1004-7638.2016.05.004
    [16] Ding Dong, Yuta Maeysohi, Masaaki Kubota, et al. A facile way to synthesize carbon-coated LiMn0.7Fe0.3PO4/reduced graphene oxide sandwich-structured composite for lithium-ion batteries[J]. ACS Applied Energy Materials, 2019,2(3):1727-1733. doi: 10.1021/acsaem.8b01821
    [17] Yu Songmin, Jin Hongbo, Yang Minghu, et al. Fluorine-doped modified LiMn0.5Fe0.5PO4 cathode materials and their electrochemical properties[J]. Advances in Chemical Engineering, 2023,43(1):302-309. (于松民, 金洪波, 杨明虎, 等. 氟掺杂改性LiMn0.5Fe0.5PO4正极材料及其电化学性能[J]. 化工进展, 2023,43(1):302-309.

    Yu Songmin, Jin Hongbo, Yang Minghu, et al. Fluorine-doped modified LiMn0.5Fe0.5PO4 cathode materials and their electrochemical properties[J]. Advances in Chemical Engineering, 2023, 43(1): 302-309.
    [18] Li Gang, Dai Zhongjia, Yang Wensheng, et al. Influence of precursor particle size on the performance of LiNi0.8Co0.1Mn0.1O2 lithium ternary material[J]. Power Supply Technology, 2020,44(2):145-148. (李刚, 戴仲葭, 杨文胜, 等. 前驱体粒径对锂电三元材料LiNi0.8Co0.1Mn0.1O2性能的影响[J]. 电源技术, 2020,44(2):145-148. doi: 10.3969/j.issn.1002-087X.2020.02.001

    Li Gang, Dai Zhongjia, Yang Wensheng, et al. Influence of precursor particle size on the performance of LiNi0.8Co0.1Mn0.1O2 lithium ternary material[J]. Power Supply Technology, 2020, 44(2): 145-148. doi: 10.3969/j.issn.1002-087X.2020.02.001
    [19] Yang Hao, Fu Cuimei, Sun Yijian, et al. Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient[J]. Carbon, 2020,158:102-109. doi: 10.1016/j.carbon.2019.11.067
    [20] Lin Chengliang, Zhao Meiju, Yuan Yunquan, et al. Research on the performance regulation of LiMn0.75Fe0.25PO4-based hybrid cathode materials[J]. Power Supply Technology, 2023,48(1):45-50. (蔺成良, 赵美菊, 袁云泉, 等. LiMn0.75Fe0.25PO4基混合正极材料性能调控研究[J]. 电源技术, 2023,48(1):45-50.

    Lin Chengliang, Zhao Meiju, Yuan Yunquan, et al. Research on the performance regulation of LiMn0.75Fe0.25PO4-based hybrid cathode materials[J]. Power Supply Technology, 2023, 48(1): 45-50.
    [21] Kosova Nina, Podgornova Olga, Gutakovskii Anton. Different electrochemical responses of LiFe0.5Mn0.5PO4 prepared by mechanochemical and solvothermal methods[J]. Journal of Alloys and Compounds, 2018,742:454-465. doi: 10.1016/j.jallcom.2018.01.242
    [22] Deng Yuanfu, Yang Chunxiang, Zou Kaixiang, et al. Recent advances of Mn-rich LiFe1- yMn yPO4 (0.5 ≤ y ≤ 1.0) cathode materials for high energy density lithium ion batteries[J]. Advanced Energy Materials, 2017,7(13):10-16.
    [23] Xiao F P, Ding B, Lai O M, et al. High performance LiMn1- xFe xPO4 (0 ≤ x ≤ 1) synthesized via a facile polymer[J]. Journal of the Electrochemical Society, 2017,160(6):918-926.
    [24] Wei Xiang, Yan Junzhong, Jun Yiji, et al. Hydrothermal synthesis, evolution, and electrochemical performance of LiMn0.5Fe0.5PO4 nanostructures[J]. Physical chemistry chemical physics, 2019,17(28):29-37.
    [25] Zhou Xue, Xie Ye, Deng Yuanfu, et al. The enhanced rate performance of LiFe0.5Mn0.5PO4/C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating[J]. Journal of Materials Chemistry A, 2014,3(3):996-1004.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  11
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回