[1] |
Zhang Jianliang, Zong Yanbing, Li Kejiang, et al. Progress and outlook of new low-carbon ironmaking technologies in the world[J]. Iron and Steel, 2024, 59(9): 45-55, 155. (张建良, 宗燕兵, 李克江, 等. 全球低碳炼铁新工艺技术进展及展望[J]. 钢铁, 2024, 59(9): 45-55, 155.Zhang Jianliang, Zong Yanbing, Li Kejiang, et al. Progress and outlook of new low-carbon ironmaking technologies in the world[J]. Iron and Steel, 2024, 59(9): 45-55, 155.
|
[2] |
Tang Jue, Chu Mansheng, Li Feng, et al. Development and progress on hydrogen metallurgy[J]. International Journal of Minerals Metallurgy and Materials, 2020,27(6):713-723. doi: 10.1007/s12613-020-2021-4
|
[3] |
Jiang Zhouhua, Yang Ce, Zhu Hongchun, et al. Research status and prospect of hydrogen metallurgy steelmaking technology[J]. Iron & Steel, 2024,59(9):140-155. (姜周华, 杨策, 朱红春, 等. 氢冶金炼钢技术的研究现状与展望[J]. 钢铁, 2024,59(9):140-155.Jiang Zhouhua, Yang Ce, Zhu Hongchun, et al. Research status and prospect of hydrogen metallurgy steelmaking technology[J]. Iron & Steel, 2024, 59(9): 140-155.
|
[4] |
Luo Dayong. Natural gas production in China from 2018-2023[J]. International Petroleum Economics, 2024,32(4):105. (罗大勇. 2018-2023年中国天然气产量[J]. 国际石油经济, 2024,32(4):105. doi: 10.3969/j.issn.1004-7298.2024.04.016Luo Dayong. Natural gas production in China from 2018-2023[J]. International Petroleum Economics, 2024, 32(4): 105. doi: 10.3969/j.issn.1004-7298.2024.04.016
|
[5] |
Bost N, Ammar M R, Bouchetou M L, et al. The catalytic effect of iron oxides on the formation of nano-carbon by the Boudouard reaction in refractories[J]. Journal of the European Ceramic Society, 2016,36(8):2133-2142. doi: 10.1016/j.jeurceramsoc.2016.02.052
|
[6] |
Shen Fengman, Ding Zhimin, Wang Shuo, et al. Development and application of carbon deposition state diagram for H-C-O system[J]. Iron and Steel, 2024,59(9):122-129. (沈峰满, 丁智敏, 王硕, 等. 关于H-C-O体系析碳状态分布图的开发与应用[J]. 钢铁, 2024,59(9):122-129.Shen Fengman, Ding Zhimin, Wang Shuo, et al. Development and application of carbon deposition state diagram for H-C-O system[J]. Iron and Steel, 2024, 59(9): 122-129.
|
[7] |
Shen Fengman. Development of H-C-O system mass balance and chemical equilibrium diagram[J]. Iron and Steel, 2023,58(6):12-17. (沈峰满. H-C-O体系质量及化学平衡衡算图的开发[J]. 钢铁, 2023,58(6):12-17.Shen Fengman. Development of H-C-O system mass balance and chemical equilibrium diagram[J]. Iron and Steel, 2023, 58(6): 12-17.
|
[8] |
Shen Fengman, Zhang Weiling, Zheng Aijun, et al. Regulation of carbon deposition during preparation process of hydrogen-rich reducing gas by natural gas reforming-An application example of H-C-O system mass balance and chemical equilibrium diagram[J]. Iron and Steel, 2023,58(7):9-16. (沈峰满, 章苇玲, 郑艾军, 等. 关于天然气重整制备富氢还原气体过程中析碳问题的调控——H-C-O体系质量及化学平衡衡算图的应用例[J]. 钢铁, 2023,58(7):9-16.Shen Fengman, Zhang Weiling, Zheng Aijun, et al. Regulation of carbon deposition during preparation process of hydrogen-rich reducing gas by natural gas reforming-An application example of H-C-O system mass balance and chemical equilibrium diagram[J]. Iron and Steel, 2023, 58(7): 9-16.
|
[9] |
Shen Fengman, Zheng Aijun, Zheng Haiyan, et al. Thoughts on preparation of hydrogen-based reduction gas and process of direct reduction iron[J]. Iron and Steel, 2022,57(3):10-15. (沈峰满, 郑艾军, 郑海燕, 等. 关于直接还原铁工艺及还原气制备的若干思考[J]. 钢铁, 2022,57(3):10-15.Shen Fengman, Zheng Aijun, Zheng Haiyan, et al. Thoughts on preparation of hydrogen-based reduction gas and process of direct reduction iron[J]. Iron and Steel, 2022, 57(3): 10-15.
|
[10] |
Zhang Run, Liu Dong, Fan Gangqiang, et al. Thermodynamic and experimental study on the reduction and carbonization of TiO2 through gas-solid reaction[J]. International Journal of Energy Research, 2019,43(9):4253-4263. doi: 10.1002/er.4551
|
[11] |
Halli P, Taskinen P, Eriҫ R H. Mechanisms and kinetics of solid state reduction of titano magnetite ore with methane[J]. Journal of Sustainable Metallurgy, 2017,3(2):191-206. doi: 10.1007/s40831-016-0063-7
|
[12] |
Lü Zepeng, Dang Jie. Mathematical modeling of the reaction of metal oxides with methane[J]. RSC Advances, 2020,10(19):11233-11243. doi: 10.1039/C9RA09418K
|
[13] |
Rashidi H, Ebrahim H A, Dabir B. Reduction kinetics of nickel oxide by methane as reducing agent based on thermogravimetry[J]. Thermochimica Acta, 2013,561:41-48. doi: 10.1016/j.tca.2013.03.014
|
[14] |
Ni Hongwei, Cang Daqiang, Jiang Junpu, et al. Suitable gas-phase compositions for the preparation of iron carbide from H2-CH4 gas[J]. Journal of East China Institute of Metallurgy, 1997,3:203-208. (倪红卫, 苍大强, 姜钧普, 等. 用H2-CH4气制备碳化铁的合适气相成分[J]. 华东冶金学院学报, 1997,3:203-208.Ni Hongwei, Cang Daqiang, Jiang Junpu, et al. Suitable gas-phase compositions for the preparation of iron carbide from H2-CH4 gas[J]. Journal of East China Institute of Metallurgy, 1997, 3: 203-208.
|
[15] |
Ma Jianghua, Li Guangqiang. Influence of iron ore porosity on its reduction and iron carbide generation[J]. Journal of Process Engineering, 2007,6:1132-1137. (马江华, 李光强. 铁矿石孔隙度对其还原和碳化铁生成的影响[J]. 过程工程学报, 2007,6:1132-1137. doi: 10.3321/j.issn:1009-606x.2007.06.014Ma Jianghua, Li Guangqiang. Influence of iron ore porosity on its reduction and iron carbide generation[J]. Journal of Process Engineering, 2007, 6: 1132-1137. doi: 10.3321/j.issn:1009-606x.2007.06.014
|
[16] |
Li Guangqiang, Wang Henghui, Yang Jian, et al. Preparation of iron carbide from high phosphorus oolitic hematite[J]. Advanced Materials Research, 2014,88-883:98-101.
|
[17] |
Wang Henghui, Li Guangqiang, Yang Jian, et al. The behavior of phosphorus during reduction and carburization of high-phosphorus oolitic hematite with H2 and CH4[J]. Metall Mater Trans B, 2016,47:2571-2581. doi: 10.1007/s11663-016-0709-7
|
[18] |
Zhang Run, Wang Chao, You Yang, et al. Reduction and carbonization of iron concentrate with hydrogen-rich gas[J]. The Minerals, Metals & Materials Series, 2024: 29-38.
|
[19] |
Ghosh D, Roy A K, Ghosh A. Reduction of ferric oxide pellets with methane[J]. Transactions of the Iron and Steel Institute of Japan, 1986,26(3):186-193. doi: 10.2355/isijinternational1966.26.186
|
[20] |
Monazam E R, Breault R W, Siriwardane R, et al. Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: A global mechanism[J]. Chemical Engineering Journal, 2013,232:478-487. doi: 10.1016/j.cej.2013.07.091
|
[21] |
Zhang G Q, Ostrovski O. Reduction of ilmenite concentrates by methane-containing gas: Part I. Effects of ilmenite composition, temperature and gas composition[J]. Canadian Metallurgical Quarterly, 2001,40(3):317-326. doi: 10.1179/cmq.2001.40.3.317
|
[22] |
Zhang Guangqing, Ostrovski O. Reduction of ilmenite concentrates by methane containing gas, Part II: Effects of preoxidation and sintering[J]. Canadian Metallurgical Quarterly, 2001,40(4):489-497. doi: 10.1179/cmq.2001.40.4.489
|
[23] |
Zhang Guangqing, Ostrovski O. Kinetic modeling of titania reduction by a methane-hydrogen-argon gas mixture[J]. Metallurgical and Materials Transactions B, 2001,32(3):465-473. doi: 10.1007/s11663-001-0032-8
|
[24] |
Dang Jie, Fatollahi F F, Pistorius P C, et al. Synthesis of titanium oxycarbide from titanium slag by methane-containing gas[J]. Metallurgical and Materials Transactions B, 2018,49(1):123-131. doi: 10.1007/s11663-017-1123-5
|
[25] |
Dang Jie, Fatollahi F F, Pistorius P C, et al. Synthesis of titanium oxycarbide from concentrates of natural ilmenite (weathered and unweathered) and natural rutile, using a methane-hydrogen gas mixture[J]. Metallurgical and Materials Transactions B, 2017,48(5):2440-2446. doi: 10.1007/s11663-017-1048-z
|
[26] |
Fan Gangqiang, Hou Youling, Huang Dejun, et al. Synthesis of Ti(C, N, O) ceramic from rutile at low temperature by CH4-H2-N2 gas mixture[J]. International Journal of Refractory Metals and Hard Materials, 2021,101:105659. doi: 10.1016/j.ijrmhm.2021.105659
|
[27] |
Fan Gangqiang, Dang Jie, Zhang Run, et al. Synthesis of Ti(C, O, N) from ilmenite at low temperature by a novel reducing and carbonitriding approach[J]. International Journal of Energy Research, 2020,44(6):4861-4874. doi: 10.1002/er.5283
|
[28] |
Fan Gangqiang, Wang Meng, Dang Jie, et al. A novel recycling approach for efficient extraction of titanium from high-titanium-bearing blast furnace slag[J]. Waste Management, 2021,120:626-634. doi: 10.1016/j.wasman.2020.10.024
|
[29] |
Zhang Run, Dang Jie, Liu Dong, et al. Reduction of perovskite-geikielite by methane-hydrogen gas mixture: Thermodynamic analysis and experimental results [J]. Science of The Total Environment, 2020,699: 134355.
|
[30] |
Zhang Run, Fan Gangqiang, Song Mingbo, et al. Thermodynamic analysis and reduction of anosovite with methane at low temperature[C]//Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies. Springer International Publishing, 2020:285-294.
|
[31] |
Zhang Run, Hou Youling, Fan Gangqiang, et al. Gas-based reduction and carbonization of titanium minerals in titanium-bearing blast furnace slag: A combined thermodynamic, experimental and DFT study[J]. International Journal of Hydrogen Energy, 2022,47(12):7586-7599. doi: 10.1016/j.ijhydene.2021.12.119
|
[32] |
Alizadeh R, Jamshidi E, Ale Ebrahim H. Kinetic study of nickel oxide reduction by methane[J]. Chemical Engineering & Technology, 2007,30(8):1123-1128.
|
[33] |
Rashidi H, Ale E H, Dabir B. Application of random pore model for synthesis gas production by nickel oxide reduction with methane[J]. Energy Conversion and Management, 2013,74:249-260. doi: 10.1016/j.enconman.2013.04.044
|
[34] |
Altay M C, Eroglu S. Isothermal reaction of NiO powder with undiluted CH4 at 1000 K to 1300 K (727 °C to 1027 °C)[J]. Metallurgical and Materials Transactions B, 2017,48(4):2067-2076. doi: 10.1007/s11663-017-0991-z
|
[35] |
Kharatyan S L, Chatilyan H A, Manukyan K V. Kinetics and mechanism of nickel oxide reduction by methane[J]. The Journal of Physical Chemistry C, 2019,123(35):21513-21521. doi: 10.1021/acs.jpcc.9b04506
|
[36] |
Pickles C A, Anthony W. Thermodynamic modelling of the reduction of a saprolitic laterite ore by methane[J]. Minerals Engineering, 2018,120:47-59. doi: 10.1016/j.mineng.2018.02.006
|
[37] |
Li Bo, Ding Zhiguang, Wei Yonggang, et al. Reduction of nickel and iron from low-grade nickel laterite ore via a solid-state deoxidization method using methane[J]. Materials Transactions, 2018,59(7):1180-1185. doi: 10.2320/matertrans.M2017351
|
[38] |
Liu Fei, Li Bo, Wei Yonggang, et al. Effect of elemental sulfur on the reduction process of laterite nickel ore under the action of methane[J]. Materials Transactions, 2023,64(12):2754-2763. doi: 10.2320/matertrans.MT-M2022189
|
[39] |
Ale E H, Jamshidi E. Kinetic study of zinc oxide reduction by methane[J]. Chemical Engineering Research & Design, 2001,79(A1):62-70.
|
[40] |
Ale E H, Jamshidi E. Effect of mass transfer and bulk flow on the zinc oxide reduction by methane[J]. Industrial & Engineering Chemistry Research, 2002,41(11):2630-2636.
|
[41] |
Ao Xianquan. Basic research on the synthesis of syngas and zinc metal by methane reduction of zinc oxide in molten salt system[D]. Kunming: Kunming University of Science and Technology, 2008. (敖先权. 熔盐体系中甲烷还原氧化锌制取合成气和金属锌的基础研究[D]. 昆明: 昆明理工大学, 2008.Ao Xianquan. Basic research on the synthesis of syngas and zinc metal by methane reduction of zinc oxide in molten salt system[D]. Kunming: Kunming University of Science and Technology, 2008.
|
[42] |
Khoshandam B, Jamshidi E, Kumar R V. Reduction of cobalt oxide with methane[J]. Metallurgical and Materials Transactions B, 2004,35(5):825-828. doi: 10.1007/s11663-004-0076-7
|
[43] |
Shirchi S, Khoshandam B, Hormozi F. Reduction kinetics of cobalt oxide powder by methane in a fluidized bed reactor[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015,51:171-176. doi: 10.1016/j.jtice.2015.01.030
|
[44] |
Qayyum M A, Reeve D A. Reduction of chromites to sponge ferrochromium in methane-hydrogen mixtures[J]. Canadian Metallurgical Quarterly, 1976,15(3):193-200. doi: 10.1179/cmq.1976.15.3.193
|
[45] |
Leikola M, Taskinen P, Eric R H. Reduction of Kemi chromite with methane[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2018,118(6):575-580.
|
[46] |
Anacleto N, Ostrovski O. Solid-state reduction of chromium oxide by methane-containing gas[J]. Metallurgical and Materials Transactions B, 2004,35(4):609-615. doi: 10.1007/s11663-004-0001-0
|
[47] |
Wu Shaowen, Feng Xiaoming, Zhang Yanling, et al. Methane-hydrogen-based pre-reduction chromite: reduction behavior and pellet compressive strength[J]. Journal of Metals, 2024,76(9):4858-4872.
|
[48] |
Anacleto N, Ostrovski O, Ganguly S. Reduction of manganese oxides by methane-containing gas[J]. ISIJ International, 2004,44(9):1480-1487. doi: 10.2355/isijinternational.44.1480
|
[49] |
Ostrovski O, Zhang G. Reduction and carburization of metal oxides by methane-containing gas[J]. AIChE Journal, 2005,52(1):300-310.
|
[50] |
Liu Bingbing, Zhang Yuanbo, Su Zijian, et al. Thermodynamic analysis and reduction of MnO2 by methane-hydrogen gas mixture[J]. Journal of Metals, 2017,69(9):1669-1675.
|