留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能金属结构材料激光增材制造技术研究进展

王华明 王玉岱

王华明, 王玉岱. 高性能金属结构材料激光增材制造技术研究进展[J]. 钢铁钒钛, 2024, 45(6): 1-6. doi: 10.7513/j.issn.1004-7638.2024.06.001
引用本文: 王华明, 王玉岱. 高性能金属结构材料激光增材制造技术研究进展[J]. 钢铁钒钛, 2024, 45(6): 1-6. doi: 10.7513/j.issn.1004-7638.2024.06.001
Wang Huaming, Wang Yudai. Progress of laser additive manufactured high-performance metal structural materials[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 1-6. doi: 10.7513/j.issn.1004-7638.2024.06.001
Citation: Wang Huaming, Wang Yudai. Progress of laser additive manufactured high-performance metal structural materials[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 1-6. doi: 10.7513/j.issn.1004-7638.2024.06.001

高性能金属结构材料激光增材制造技术研究进展

doi: 10.7513/j.issn.1004-7638.2024.06.001
详细信息
    作者简介:

    王华明,1962年出生,男,博士,教授,中国工程院院士,通讯作者,主要从事金属构件增材制造技术开发,E-mail:wanghm@buaa.edu.cn

    通讯作者:

    王华明,1962年出生,男,博士,北京航空航天大学材料科学与工程学院教授,中国工程院院士,主要从事金属构件增材制造技术开发,E-mail:wanghm@buaa.edu.cn

  • 中图分类号: TG665,TF823

Progress of laser additive manufactured high-performance metal structural materials

  • 摘要: 高性能金属构件激光增材制造技术在重大高端装备制造中展现出巨大发展潜力和广阔的应用前景,北京航空航天大学在大型金属构件激光增材制造方面开展了深入研究,取得了许多突破性研究成果。文中综述了该团队在高性能金属结构材料激光增材制造技术方面的研究进展,揭示了激光增材制造非平衡凝固形核生长机理,建立了钛合金和镍基高温合金晶粒形态主动控制方法,提出了激光增材制造材料强韧化新机理,开发出高性能增材制造钛合金和超高强度钢。未来研究热点仍聚焦于激光/金属交互作用行为、材料凝固相变规律等基础问题研究,以及基于激光增材超常冶金的高性能全新金属结构材料设计与开发,以进一步发挥激光增材制造技术在国家重大装备大型金属构件制造方面的变革性潜力。
  • 图  1  激光增材制造TC11钛合金不同晶粒形态及形成机制[8]

    Figure  1.  Grain morphologies and their forming mechanism of laser additive manufactured TC11 titanium alloy[8]

    图  2  合金元素含量对激光增材制造五种钛合金的晶粒形态及凝固行为的影响[9]

    Figure  2.  Effect of alloy element contents on the grain morphologies and solidification behavior of five titanium alloys fabricated by laser additive manufacturing[9]

    (a)TC4;(b)TA15; (c)TC11; (d) TC17; (e)TB6

    图  3  激光增材制造高温合金加工图及制备的单晶试样[10]

    Figure  3.  Processing map of laser additive manufactured superalloy and the prepared single-crystal sample[10]

    图  4  不同激光入射情况下激光快速凝固晶粒生长形态及示意[11]

    Figure  4.  Schematic of grain growth morphology of laser rapid solidified single-crystal superalloy with different rotated laser irradiation methods[11]

    图  5  LAM-TC11与锻件TC4-DT钛合金的疲劳裂纹扩展速率相当[16]

    Figure  5.  Comparison of fatigue crack growth rate of LAM-TC11 titanium alloy and forged TC4-DT

    图  6  典型超高强度钢的屈服强度和断裂韧性对比[19]

    (a)不同系列商用超高强度钢;(b)激光增材制造和锻造AerMet100钢

    Figure  6.  Comparison of yield strength and plane-strain fracture toughness of different ultrahigh strength steels[19]

    表  1  LAM-TC11、TC11锻件、TC4-DT和TC4钛合金强度和断裂韧性对比[16]

    Table  1.   Comparison of ultimate strength and fracture toughness of LAM-TC11, forged TC11, TC4-DT and TC4 titanium alloys[16]

    试样 极限强度
    σb/MPa
    屈服强度
    σ0.2/MPa
    断裂韧性
    KIC/(MPa·m1/2
    屈强比
    σ0.2/σb
    KIC/σb)/(mm)1/2 许用应力
    [σ]=(σb/1.5)/MPa
    KIC/σ0.22/mm
    LAM-TC11 1056 902 116 0.85 3.47 704 16.54
    TC11锻件 1076 980 76 0.91 2.23 717 6.01
    TC4-DT(锻造) 858 794 106 0.93 3.92 572 17.82
    TC4(锻造) 922 885 64 0.96 2.19 614 5.23
    下载: 导出CSV
  • [1] Arcella F G, Froes F H. Producing titanium aerospace components from powder using laser forming[J]. JOM, 2000,52(5):28-30. doi: 10.1007/s11837-000-0028-x
    [2] Wang Huaming. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014,35(10):2690-2698. (王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014,35(10):2690-2698.

    Wang Huaming. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698.
    [3] Wang Xiangming, Su Yadong, Wu Bin. Application of additive manufacturing technology on aircraft structure development[J]. Aeronautical Manufacturing Technology, 2014(22):16-20. (王向明, 苏亚东, 吴斌. 增材技术在飞机结构研制中的应用[J]. 航空制造技术, 2014(22):16-20. doi: 10.3969/j.issn.1671-833X.2014.22.002

    Wang Xiangming, Su Yadong, Wu Bin. Application of additive manufacturing technology on aircraft structure development[J]. Aeronautical Manufacturing Technology, 2014(22): 16-20. doi: 10.3969/j.issn.1671-833X.2014.22.002
    [4] Lu Bingheng. Additive manufacturing——Current situation and future[J]. China Mechanical Engineering, 2020,31(1):19-23. (卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程, 2020,31(1):19-23. doi: 10.3969/j.issn.1004-132X.2020.01.003

    Lu Bingheng. Additive manufacturing——Current situation and future[J]. China Mechanical Engineering, 2020, 31(1): 19-23. doi: 10.3969/j.issn.1004-132X.2020.01.003
    [5] Tang Haibo, Wu Ning, Zhang Shuquan, et al. Research status and development trend of high performance large metallic components by laser additive manufacturing technique[J]. Journal of Netshape Forming Engineering, 2019,11(4):58-63. (汤海波, 吴宇, 张述泉, 等. 高性能大型金属构件激光增材制造技术研究现状与发展趋势[J]. 精密成形工程, 2019,11(4):58-63. doi: 10.3969/j.issn.1674-6457.2019.04.008

    Tang Haibo, Wu Ning, Zhang Shuquan, et al. Research status and development trend of high performance large metallic components by laser additive manufacturing technique[J]. Journal of Netshape Forming Engineering, 2019, 11(4): 58-63. doi: 10.3969/j.issn.1674-6457.2019.04.008
    [6] Gu Dongdong, Zhang Hongmei, Chen Hongyu, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020,47(5):32-55. (顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020,47(5):32-55.

    Gu Dongdong, Zhang Hongmei, Chen Hongyu, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5): 32-55.
    [7] Wang Huaming, Zhang Shuquan, Wang Tao, et al. Progress on solidification grain morphology and microstructure control of laser additively manufactured large titanium components[J]. Journal of Xihua University(Natural Science Edition), 2018,37(4):9-14. (王华明, 张述泉, 王韬, 等. 激光增材制造高性能大型钛合金构件凝固晶粒形态及显微组织控制研究进展[J]. 西华大学学报(自然科学版), 2018,37(4):9-14. doi: 10.3969/j.issn.1673-159X.2018.04.002

    Wang Huaming, Zhang Shuquan, Wang Tao, et al. Progress on solidification grain morphology and microstructure control of laser additively manufactured large titanium components[J]. Journal of Xihua University(Natural Science Edition), 2018, 37(4): 9-14. doi: 10.3969/j.issn.1673-159X.2018.04.002
    [8] Wang T, Zhu Y Y, Zhang S Q, et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing[J]. Journal of Alloy and Compounds, 2015,632:505-513. doi: 10.1016/j.jallcom.2015.01.256
    [9] Zhu Yanyan, Tang Haibo, Li Zhuo, et al. Solidification behavior and grain morphology of laser additive manufacturing titanium alloys[J]. Journal of Alloy and Compounds, 2019,777:712-716. doi: 10.1016/j.jallcom.2018.11.055
    [10] Liang Yaojian, Cheng Xu, Li Jia, et al. Microstructural control during laser additive manufacturing of single-crystal nickel-base superalloys: New processing–microstructure maps involving powder feeding[J]. Materials & Design, 2017,130:197-207.
    [11] Wang Jiawei, Wang Huaming, Li Kangjie, et al. A new strategy to inhibit stray grain formation during laser directed solidification of single crystal superalloys[J]. Journal of Alloy and Compounds, 2022,906:163852. doi: 10.1016/j.jallcom.2022.163852
    [12] Wang Jiawei, Wang Huaming, Gao Hongwei, et al. Crystal growth for different substrate orientations during laser directed solidification of single crystal superalloys[J]. Journal of Alloy and Compounds, 2023,957:170219. doi: 10.1016/j.jallcom.2023.170219
    [13] Zhu Yanyan, Li Jia, Tian Xiangjun, et al. Microstructure and mechanical properties of hybrid fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser additive manufacturing[J]. Materials Science and Engineering A, 2014,607:427-434. doi: 10.1016/j.msea.2014.04.019
    [14] Zhu Yanyan, Liu Dong, Tian Xiangjun, et al. Characterization of microstructure and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Materials and Design, 2014,56:445-453. doi: 10.1016/j.matdes.2013.11.044
    [15] Wang Yafei, Chen Rui, Cheng Xu, et al. Effects of microstructure on fatigue crack propagation behavior in a bi-modal TC11 titanium alloy fabricated via laser additive manufacturing[J]. Journal of Materials Science & Technology, 2019,35:403-408.
    [16] Zhang Jikui, Kong Xiangyi, Ma Shaojun, et al. Laser additive manufactured high strength-toughness TC11 titanium alloy: Mechanical properties and application in airframe load-bearing structure[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(10):467-477. (张纪奎, 孔祥艺, 马少俊, 等. 激光增材制造高强高韧TC11钛合金力学性能及航空主承力结构应用分析[J]. 航空学报, 2021,42(10):467-477.

    Zhang Jikui, Kong Xiangyi, Ma Shaojun, et al. Laser additive manufactured high strength-toughness TC11 titanium alloy: Mechanical properties and application in airframe load-bearing structure[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 467-477.
    [17] Ran Xianzhe, Cheng Hao, Wang Huaming, et al. Corrosion properties of laser melting-deposited corrosion-resistant ultrahigh strength steel AerMet100[J]. Transactions of Materials and Heat Treatment, 2012,33(12):126-131. (冉先喆, 程昊, 王华明, 等. 激光熔化沉积AerMet100耐蚀超高强度钢的耐蚀性[J]. 材料热处理学报, 2012,33(12):126-131.

    Ran Xianzhe, Cheng Hao, Wang Huaming, et al. Corrosion properties of laser melting-deposited corrosion-resistant ultrahigh strength steel AerMet100[J]. Transactions of Materials and Heat Treatment, 2012, 33(12): 126-131.
    [18] Ran Xianzhe, Liu Dong, Li Jia, et al. Effects of post homogeneity heat treatment processes on microstructure evolution behavior and tensile mechanical properties of laser additive manufactured ultrahigh-strength AerMet100 steel[J]. Materials Science & Engineering A, 2018,723:8-21.
    [19] Ran Xianzhe, Zhang Shuquan, Liu Dong, et al. Role of microstructural characteristics in combination of strength and fracture toughness of laser additively manufactured ultrahigh-strength AerMet100 steel[J]. Metallurgical and Materials Transactions A, 2021,52:1248-1259. doi: 10.1007/s11661-021-06148-1
    [20] Cui Can, Wang Xiangming, Wu Bin, et al. Study on application of laser deposited additive manufacturing technology on aircraft undercarriage[J]. Aeronautical Manufacturing Technology, 2018,61(10):74-79. (崔灿, 王向明, 吴斌, 等. 激光直接沉积成形增材制造技术在飞机起落架上的应用研究[J]. 航空制造技术, 2018,61(10):74-79.

    Cui Can, Wang Xiangming, Wu Bin, et al. Study on application of laser deposited additive manufacturing technology on aircraft undercarriage[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 74-79.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  24
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-10
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回