留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑应变、应变率和温度耦合作用下航空不锈钢0Cr17Ni4Cu4Nb本构模型的建立

张继林 张又铭 罗文翠 易湘斌 唐林虎 姚家宝

周莉, 薛仁杰, 曹晓恩, 文才君. DH&DP钢显微组织、力学性能及形变机制差异研究[J]. 钢铁钒钛, 2023, 44(6): 186-191. doi: 10.7513/j.issn.1004-7638.2023.06.026
引用本文: 张继林, 张又铭, 罗文翠, 易湘斌, 唐林虎, 姚家宝. 考虑应变、应变率和温度耦合作用下航空不锈钢0Cr17Ni4Cu4Nb本构模型的建立[J]. 钢铁钒钛, 2023, 44(6): 149-159. doi: 10.7513/j.issn.1004-7638.2023.06.021
Zhou Li, Xue Renjie, Cao Xiaoen, Wen Caijun. Study on the differences in microstructure, mechanical properties, and deformation mechanism between DH and DP steels[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 186-191. doi: 10.7513/j.issn.1004-7638.2023.06.026
Citation: Zhang Jilin, Zhang Youming, Luo Wencui, Yi Xiangbin, Tang Linhu, Yao Jiabao. Establishment of a constitutive model of aviation stainless steel 0Cr17Ni4Cu4Nb considering the coupling effects of strain, strain rate and temperature[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 149-159. doi: 10.7513/j.issn.1004-7638.2023.06.021

考虑应变、应变率和温度耦合作用下航空不锈钢0Cr17Ni4Cu4Nb本构模型的建立

doi: 10.7513/j.issn.1004-7638.2023.06.021
基金项目: 国家自然科学基金项目(51965031);甘肃省青年科技基金计划项目(21JR7RA351);甘肃省科技计划项目(22JR11RA156);甘肃省高等学校产业支撑(2021-CYZC-52);甘肃省重点人才项目 (甘组通字 [2022]77号);国家级大学生创新创业训练计划项目(DC2201-07)。
详细信息
    作者简介:

    张继林,1987年出生,男,甘肃民乐人,硕士,副教授,主要从事材料的动态力学性能、材料疲劳性能以及切削性能研究,E-mail:zjl-0111@163.com

    通讯作者:

    罗文翠,1969年出生,男,甘肃靖远人,硕士,教授,主要从事材料的动态力学性能、材料疲劳性能以及切削性能研究,E-mail:496021016@qq.com

  • 中图分类号: TG115.5,TG142.1

Establishment of a constitutive model of aviation stainless steel 0Cr17Ni4Cu4Nb considering the coupling effects of strain, strain rate and temperature

Funds: This work was financially supported by the Natural Science Foundation of China (XXXXXXXX).
  • 摘要: 航空不锈钢0Cr17Ni4Cu4Nb具有优良的特性,广泛应用在各个机械的重要零部件上,零件的加工过程伴随着大应变、高温和高应变率,基于此考虑耦合关系建立能够真实反映切削力学性能的本构模型,为切削仿真提供可靠的数据。以航空不锈钢0Cr17Ni4Cu4Nb为研究对象,利用万能试验机(UTM5305)和高温分离式霍普金森试验装置(Split Hopkinson Pressure Bar,SHPB,ALT1000)分别进行准静态压缩试验(温度为25 ℃,应变率为0.1、0.01、0.001s−1)和动态冲击试验(温度为25、350、500、650 ℃,应变率为750、1500、2000、260035004500 s−1),获得该材料的应力应变关系,并分析其力学性能,结果表明该材料具有应变硬化效应、温度软化效应、应变率强化效应和增塑效应。综合应变、应变率和温度三者相互作用,建立耦合作用下的Johnson-Cook(JC)本构方程,统计分析了试验数据与预测数据(原JC本构方程和修正JC本构方程数据),原JC本构方程的相关系数(R)和平均相对误差(AARE)分别为0.96833和4.77%;修正JC本构方程的相关系数(R)和平均相对误差(AARE)分别为0.987513和0.51%,表明修正JC本构方程更加准确、可靠预测高应变率下应力应变的关系。
  • 冷轧双相钢(DP钢)作为第1代先进高强钢(Advanced High Strength Steel),具有屈服强度低、初始加工硬化率高以及良好强塑性匹配的特点,广泛应用于白车身零部件[1]。传统DP钢显微组织由铁素体(F)与马氏体(M)组成,其中F/M的比例决定了强度/塑性的匹配[2]。然而,随着强度的提升、塑性衰减较快,限制了复杂零件的成形与应用。随着汽车制造业的发展与升级,安全与节能成为汽车评价的主要指标,对汽车用钢的生产提出了更高要求。面对汽车行业新发展需求及高强双相钢的应用限制,首钢联合北京科技大学成功开发了增强成形性双相钢(DH钢),在传统双相钢两相组织基础上引入少量亚稳态残余奥氏体,在受力变形状态下,残余奥氏体发生相变诱导塑性(即TRIP效应),使材料强度与塑性得到提升[3],更适合用于复杂结构件与安全件的加工成形,作为新型先进高强钢极具市场应用前景。

    目前,关于DH钢的研究主要集中在退火热处理工艺对组织性能的影响方面[4-6],关于DH钢与DP钢显微组织、力学性能及形变机制的差异报道较少。笔者选取典型牌号DH780与DP780作为研究对象,对不同应变速率下钢的力学性能及扩孔性能进行了对比分析,探究了增强成形性双相钢强韧性机制,对汽车选材与DH钢的应用推广具有重要参考意义。

    试验材料为某钢厂采用260 t转炉→LF+RH双精炼→板坯连铸→2250热连轧→2180酸连轧→2030连续退火工艺路径生产的厚度为1.2 mm 的DH780与DP780冷轧高强钢,其主要化学成分如表1所示。传统DP780采用低C-Mn-Si-Cr-Nb-Ti成分体系,低碳设计保证良好焊接性能;Mn为奥氏体稳定元素及发挥固溶强化作用[1];Si为铁素体强化元素,抑制碳化物的生成;Cr发挥固溶强化作用,同时提高淬透性;固溶Nb在高温奥氏体晶界偏聚,对高温奥氏体晶界具有拖曳作用,可细化形变奥氏体晶粒,进而细化相变组织;Nb、Ti具有第二相析出强化作用[7]。增强成形性双相钢DH780较DP780具有更高C含量,目的是实现两相区均热过程具有足够C原子向奥氏体富集,提升奥氏体(残余奥氏体)的稳定性;Al元素与Si元素作用相似,促进铁素体相变、C原子扩散与抑制碳化物析出,同时Al具有推迟珠光体相变的作用[8]

    表  1  试验钢主要化学成分
    Table  1.  Main chemical compositions of experimental steels %
    牌号CMnSiPSCrAlNbTi
    DH7800.17~0.192.1~2.30.4~0.5≤0.010≤0.0050.18~0.210.7~0.90.02~0.04-
    DP7800.09~0.122.0~2.40.5~0.6≤0.010≤0.0050.28~0.30-0.02~0.030.02~0.04
    下载: 导出CSV 
    | 显示表格

    利用Empyrean型X射线衍射仪(XRD)对试验钢中残余奥氏体含量进行检测。试验采用Co靶、步宽为0.02°、扫描速率1°/min、扫描角度30°~130°、管电压40 kV、管电流200 mA。选取γ相中(200)、(220)、(311)衍射线与α相中(200)、(211)衍射线,利用五峰法对各晶面累计衍射强度进行计算得到残余奥氏体含量[9]。试验钢经抛光、4%硝酸酒精溶液侵蚀后分别在Zeiss金相显微镜与ZeissUItra55 型场发射扫描电子显微镜(SEM)下进行显微组织观察。经20%高氯酸酒精溶液电解抛光后进行电子背散射衍射(EBSD)表征。

    为了研究板料冲压成形过程中的受力状态,同时考虑拉伸数据准确性,采用CMT5305型拉伸试验机分别以0.001、0.01、0.1 s−1的应变速率进行准静态拉伸试验,采用HTM5020型高速拉伸试验机分别以1、10、50、100、200、500、1000 s−1的应变速率进行动态拉伸试验。按照ISO 26203-2-2011《金属材料.高应变率拉伸试验.第2部分:伺服液压和其他试验系统》要求,采用钼丝切割机将钢板加工成高速拉伸试样,线切割加工后用砂纸打磨去除线切割切割痕,以保证试样切割面平整光滑,试样尺寸如图1所示。扩孔试验能够反映板料凸缘翻边性能,为了对比成形过程凸缘翻边能力,按照ISO16630标准进行扩孔试验。

    图  1  高速拉伸试样示意(单位:mm)
    Figure  1.  Schematic diagram of the sample for high-speed stretching tests

    图2为DH780与DP780试样XRD衍射图谱,可知,DH780存在(200)γ、(220)γ、(311)γ特征峰,根据公式(1)[10]计算,可知DH780中残余奥氏体含量为5.1%,而DP780中几乎不存在残余奥氏体。

    图  2  DH780与DP780试样XRD衍射谱
    Figure  2.  XRD patterns of DH780 and DP780 samples
    $$ {V}_{{\rm{A}}}=\frac{1-{V}_{{\rm{C}}}}{1+G\dfrac{{I}_{{\mathrm{M}}_{{\left(\mathrm{h}\mathrm{k}\mathrm{l}\right)}_{\mathrm{i}}}}}{{{{I}_{\mathrm{A}}}_{\left(\mathrm{h}\mathrm{k}\mathrm{l}\right)}}_{\mathrm{j}}}} $$ (1)

    式中,VA为奥氏体相的体积分数,%;VC为碳化物相总量的体积分数,%;IM(hkl)i为马氏体(hkl)i晶面衍射线的累计强度;IA(hkl)i为奥氏体(hkl)i晶面衍射线的累计强度;G为奥氏体(hkl)晶面与马氏体(hkl)晶面所对应的强度因子之比。

    图3为DH780与DP780光学显微组织形貌,二者均为铁素体与马氏体,其中DH780晶粒均匀细小,马氏体组织分布更为弥散,而DP780组织中存在大块状多边形铁素体与明显的碳化物析出,带状组织较明显。由于光学显微镜无法分辨是否存在残余奥氏体与马氏体的分布形态,需要借助扫描电镜与EBSD进一步表征。在扫描电镜下发现,DH780与DP780显微组织中马氏体均为板条马氏体,其中DP780中马氏体以淬火态为主,而DH780中存在少量回火马氏体,分析与过时效过程中马氏体中碳化物析出有关,如图45所示。

    图  3  DH780与DP780显微组织(OM)
    Figure  3.  Optical microstructures of DH780 and DP780
    图  4  DH780与DP780显微组织(SEM)
    Figure  4.  Scanning electron microscopes of DH780 and DP780

    综合SEM与EBSD结果显示,DH780中残余奥氏体呈块状、薄膜状、链状与细小粒状在铁素体基体中分布[11],其主要以3种形式分别位于铁素体界面(F/F,γ)、位于铁素体或马氏体晶粒中(M&F,γ)、位于铁素体和马氏体交界(F/M,γ),且多数位于相界面与铁素体晶界处,如图4图5所示。点链状或者薄膜长条状分布的残余奥氏体较稳定,一般在应力加载过程的中期才发生应力诱导马氏体相变;块状形式存在的残余奥氏体在施加应力初期优先发生TRIP效应。残余奥氏体γ在F/M边界呈亮白边圈,主要因为两相区退火过程中Mn元素短程扩散致使在F/M边界形成富Mn区,富Mn区淬透性较高,局部区域Ms点下降,奥氏体稳定性提高,以残余奥氏体形式保留至室温,与岛内马氏体组织具有不同的色差效应。

    图  5  DH780残余奥氏体分布
    Figure  5.  Distribution of residual austenite in DH780
    2.3.1   不同应变速率下力学性能对比分析

    钢铁材料变形本质是位错滑移与增殖的过程。冷轧双相钢以马氏体与铁素体组织为主,两相中位错主要以无钉扎自由态存在,在低应变速率下(含准静态),铁素体内可动位错优先开启进行滑移与增殖,故DP780与DH780应力-应变曲线均无明显屈服现象,如图6所示。应变速率增加初期,DP780和DH780的屈服强度、抗拉强度随应变速率的增加均呈现小幅度增加的趋势。在准静态条件下,当应变速率达到10 s−1时,屈服强度、抗拉强度出现较为明显的提升,之后随着应变速率增加,强度不断升高。

    图  6  工程应力-应变曲线
    Figure  6.  Engineering stress-strain curves

    图7为应变速率对强塑性指标的影响。应变速率的提高改变了位错滑移与增殖机制,高应变速率下材料强塑性均明显增加。在应变速率由0.001 s−1增加至1000 s−1过程中,DP780屈服强度由531 MPa增加到724 MPa,增加了36%,抗拉强度由876 MPa增加到1021 MPa,增加了16%;而DH780屈服强度由500 MPa增加到690 MPa,增加了38%,抗拉强度由796 MPa增加到997 MPa,增加了26%,说明DH780较DP780表现出较强的应变速率敏感性特征。由于DH780基体存在一定量的残余奥氏体,奥氏体面心立方结构(FCC)中可动滑移系多,有利于位错滑移,更为重要的是变形过程应变速率的提高为残余奥氏体转变为马氏体(即TRIP效应)提供了足够动力,使变形区域的塑性进一步提升,从而延缓裂纹的形成与扩展,提高材料的变形能力。

    图  7  强塑性指标与应变速率的关系
    Figure  7.  Relationship between strength & plasticity index and strain rate

    残余奥氏体的引入使DH780具有TRIP效应的增塑机制,可有效降低位错运动阻力,较传统DP780表现出更高强塑特性。随着应变速率提升,DH780强塑积由27.06 GPa·%增加至38.83 GPa·%,其材料吸能性能显著增强。表2为试验钢应变速率0.01 s−1条件下的准静态力学性能,DP780和DH780垂直轧制方向(横向)的强度均高于轧制方向,DH780的断后延伸率均达到30%以上,整体断后延伸率较DP780高6.9~12.5个百分点,塑性指标显著优于DP780。

    表  2  准静态力学性能(ε=0.01 s−1
    Table  2.  Quasi-static mechanical properties(ε=0.01 s−1
    牌号方向屈服强度/MPa抗拉强度/MPa断后伸长率/%强塑积/(GPa·%)
    DH78050182331.325.76
    45°48780431.625.41
    90°52283130.825.59
    DP78051181819.518.41
    45°52982124.717.82
    90°54184318.316.27
    下载: 导出CSV 
    | 显示表格
    2.3.2   扩孔性能对比分析

    根据GB/T 24524-2021《金属材料 薄板和薄带 扩孔试验方法》分别对试验钢DH780和DP780进行扩孔率检测,测量3次取平均值。DP780试样扩孔率为50.32%,而DH780试样扩孔率达到74.61%,较DP780提升48.27%。扩孔试验过程中与锥头接触的板料下表面(凸缘翻边后为内侧)受压应力作用,而板料上表面(凸缘翻边后为外侧)受张应力作用。扩孔过程中板料上表面变形程度大于下表面,随着扩孔直径的增大,凸缘翻边外侧受到的张应力越大,当超过材料强度极限时出现裂纹萌生及扩展,裂纹由凸缘翻边外侧向内侧延伸,扩展路径与板料厚度方向呈45°分布。由于板带横向强度高,塑性指标低于轧制方向,裂纹多在垂直轧向的两侧出现,具体如图8所示。

    图  8  扩孔裂纹宏观形貌
    Figure  8.  Macro morphology of reaming cracks
    (a)DH780;(b)DP780

    宏观而言由于铁素体与马氏体硬度、弹性模量不同,受力过程两相变形能力存在显著差异,导致在铁素体/马氏体两相界面处产生应力集中,当相界面处应力超过两相结合力时开始萌生裂纹,并且随着变形过程裂纹沿铁素体/马氏体相界面处扩展。微观组织观察可知,DH780与DP780显微组织均以铁素体与弥散分布马氏体为主,组织细小均匀,扩孔变形初期,位错在铁素体中滑移,并在晶界与相界处产生塞积,随着应力提高,马氏体位错开启与增殖,在相界面处不断交织与缠结,形成较大应力集中,进而发展成为裂纹源。试验钢DH780中存在约5%残余奥氏体,奥氏体具有更多滑移系可有效减缓位错塞积,同时应力作用下残余奥氏体TRIP效应更为显著,从而延缓了应力集中与裂纹源的形成[12]

    图9为试验钢扩孔试验断口微观形貌,两者均为韧性断裂,DH780韧窝较大且深、撕裂脊明显,而DP780韧窝相对较浅、无明显撕裂脊。亦说明扩孔过程中DH780抗局部变形能力更强,具有更高的塑性与扩孔性能。

    图  9  扩孔裂纹断口形貌
    Figure  9.  Fracture morphology of reaming cracks

    1) 试验钢DH780由铁素体、马氏体、残余奥氏体组成,其中残余奥氏体含量约5.1%,呈块状、薄膜状、链状与细小粒状,位于相界面与铁素体晶界处。

    2) 随着应变速率的提升,材料屈服强度、抗拉强度均呈现增强趋势,DH780较DP780具有更高的应变速率敏感性特征,DH780强塑积增加至38.83 GPa·%,吸能性能显著增强。

    3) DH780残余奥氏体在塑性变形过程中转变为马氏体,TRIP效应显著实现材料塑性提升;同时奥氏体具有更多滑移系可有效减缓位错塞积、延缓应力集中与裂纹源的形成,使得DH780较DP780具有更高扩孔率,扩孔率达到74.61%。

  • 图  1  准静态压缩试验的$ \varepsilon - \sigma $曲线

    Figure  1.  $ \varepsilon - \sigma $ curves by quasi-static compression tests

    图  2  不同应变率下SHPB试验$ \varepsilon - \sigma $曲线

    Figure  2.  $ \varepsilon - \sigma $ curves of SHPB under different strain rates

    图  3  不同温度下SHPB试验$ \varepsilon - \sigma $曲线

    Figure  3.  $ \varepsilon - \sigma $ curves of SHPB under different temperatures

    图  4  动态冲击时应变($ \varepsilon $)与应变率敏感指数($ m $)的关系

    Figure  4.  Relationship between strain ($ \varepsilon $) and strain rate sensitivity index ($ m $)

    图  5  动态冲击时应变率的对数(lg$ \dot \varepsilon $)与应变率敏感指数($ m $)的关系

    Figure  5.  The relationship between the logarithm of the strain rate (lg$ \dot \varepsilon $) and strain rate sensitivity index ($ m $)

    图  6  不同条件下试样变形

    Figure  6.  Specimen deformation under different conditions

    图  7  试验前后的试样

    Figure  7.  Samples before and after the tests

    图  8  应变项拟合曲线

    Figure  8.  Fitting curve of strain item

    图  9  原JC本构模型、修正JC本构模型真应力预测和试验值比较

    Figure  9.  Comparison of the predicted and tested true stress values between the original and modified JC constitutive models

    图  10  原JC本构模型、修正JC本构预测值和试验值之间的关系

    Figure  10.  Relationship between the original and modified JC constitutive model prediction values and experimental values

    图  11  原JC本构模型、修正JC本构模型平均相对误差比

    Figure  11.  Comparison of the average relative errors of the original and modified JC constitutive models

    表  1  0Cr17Ni4Cu4Nb不锈钢化学成分

    Table  1.   Chemical composition of 0Cr17Ni4Cu4Nb stainless steel %

    CSiCrNiMnPSCuNbFe
    0.060.8016.253.600.820.0300.0223.830.28Bal.
    下载: 导出CSV

    表  2  准静态下不同应变率和应变处的强化指数$ n $

    Table  2.   Strengthening exponent $ n $ at different strain rates and strains under quasi-static state

    $ \dot \varepsilon /{{\text{s}}^{ - 1}} $n
    $ \varepsilon $=0.20$ \varepsilon $=0.25$ \varepsilon $=0.30$ \varepsilon $=0.35$ \varepsilon $=0.40$ \varepsilon $=0.45
    0.0010.14180.12500.06250.03350.02100.0425
    0.010.16120.08490.06110.02390.01190.0390
    0.10.11870.06440.02600.00040.01450.0267
    下载: 导出CSV

    表  3  准静态试样变形量

    Table  3.   Deformation of quasi-static specimens

    应变率/$ {{\text{s}}^{ - 1}} $直径/mm厚度/mm
    0.0017.294.31
    0.017.434.11
    0.17.673.78
    下载: 导出CSV

    表  4  动态试样变形量(T=25 T=650 )

    Table  4.   Deformation of quasi-static specimens

    T/℃$ \dot \varepsilon /{{\text{s}}^{ - 1}} $$ d/{\text{mm}} $$ h/{\text{mm}} $
    257503.122.68
    15003.182.47
    2 0003.642.06
    26003.771.86
    35004.011.65
    45004.420.76
    6507503.362.40
    15003.552.22
    2 0003.711.97
    26004.131.56
    35004.371.51
    45004.470.77
    下载: 导出CSV

    表  5  应变项参数值

    Table  5.   Parameter values of strain item

    B0B1B2B3B4
    509.015815908.285821498.5435937.29523318.67
    下载: 导出CSV

    表  6  应变率项参数值

    Table  6.   Parameter values of strain rate item

    C0C1C2C3C4
    2.422660.699410.063710.0019211.18017
    C5C6C7C8C9
    3.045599.696151.586250.180260.06239
    下载: 导出CSV

    表  7  温度项参数值

    Table  7.   Parameter values of temperature item

    a0a1a2a3a4a5
    67.508369.61375118.52129333.9020215.061351.08320
    a6a7a8a9a10
    0.025521.079630.000003.530050.39414
    下载: 导出CSV
  • [1] 郭亚欢. 0Cr17Ni4Cu4Nb不锈钢热处理工艺及性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.

    Guo Yahuan. Effect of heat treatment processes on properties of 0Cr17Ni4Cu4Nb steel[D]. Harbin: Harbin Engineering University, 2011.
    [2] 吕义郎. 0Cr17Ni4Cu4Nb不锈钢薄壁环形件胀形工艺研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    Lü Yilang. Bulging process of 0Cr17Ni4Cu4Nb stainless steel thin-walled ring research[D]. Harbin: Harbin Engineering University, 2018.
    [3] 夏德贵. 0Cr17Ni4Cu4Nb马氏体沉淀硬化不锈钢耐海水腐蚀性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.

    Xia Degui. Seawater corrosion resistance property of 0Cr17Ni4Cu4Nb martensitic precipitation hardening stainless steel[D]. Harbin: Harbin Engineering University, 2007.
    [4] 朱凯旋. 0Cr17Ni4Cu4Nb燃气轮机叶片材料砂带磨削的表面质量研究[D]. 重庆: 重庆大学, 2006.

    Zhu Kaixuan. Study on surface quality of the material 0Cr17Ni4Cu4Nb gas turbine blade ground by coated abrasive belt[D]. Chongqing: Chongqing University, 2006.
    [5] Remington B A, Bazan G, Belak J, et al. Materials science under extreme conditions of pressure and strain rate[J]. Metallurgical & Materials Transactions A, 2004,35(9):2587−2607.
    [6] Tian Xianhua, Yan Kuicheng, Zhao Jun, et al. Properties at elevated temperature and high strain rate and establishment of Johnson-Cook constitutive model for GH2132[J]. China Mechanical Engineering, 2022,33(7):872−881. (田宪华, 闫奎呈, 赵军, 等. GH2132高温高应变率下力学性能分析与Johnson-Cook本构模型的建立[J]. 中国机械工程, 2022,33(7):872−881.

    Tian Xianhua, Yan Kuicheng, Zhao Jun, et al. Properties at elevated temperature and high strain rate and establishment of Johnson-Cook constitutive model for GH2132[J]. China Mechanical Engineering, 2022, 33(7): 872-881.
    [7] Jamwal A, Agrawal R, Sharma M, et al. Application of optimization techniques in metal cutting operations: A biliometric analysis[J]. Materials Today: Proceedings, 2020,38(1):365−370.
    [8] Zhang Jilin, Jia Haishen, Yi Xiangbin, et al. Dynamic mechanical properties and comparison of two constitutive models for martensitic stainless steel 0Cr17Ni4Cu4Nb[J]. Materials Research Express, 2021,8(10):106501. doi: 10.1088/2053-1591/ac29f5
    [9] Chen G, Ren C, Yang X, et al. Evidence of thermoplastic instability about segmented chip formation process for Ti-6Al-4V alloy based on the finite-element method[J]//Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering, 2011, 225(6): 1407-1417.
    [10] Shi Jing, Zhang Weiqiang, Guo Jin. Constitutive model of plastic deformation for metal[J]. Materials Reports, 2010,24(4):82−85. (是晶, 张伟强, 郭金. 金属塑性变形的本构模型研究[J]. 材料导报, 2010,24(4):82−85.

    Shi Jing, Zhang Weiqiang, Guo Jin. Constitutive model of plastic deformation for metal[J]. Materials Reports, 2010, 24(4): 82-85.
    [11] Zhan Lishui, Liu Cheng, Ye Junqing, et al. Research on refinement of heat treatment for improving hardness of 17-4PH (0Cr17Ni4Cu4Nb) forgings[J]. Forging & Stamping Technology, 2021,46(9):212−215. (占立水, 刘成, 叶俊青, 等. 改善17-4PH(0Cr17Ni4Cu4Nb)锻件硬度的热处理精细化研究[J]. 锻压技术, 2021,46(9):212−215.

    Zhan Lishui, Liu Cheng, Ye Junqing, et al. Research on refinement of heat treatment for improving hardness of 17-4 PH (0 Cr17 Ni4 Cu4 Nb) forgings[J]. Forging & Stamping Technology, 2021, 46(9): 212-215.
    [12] He Li. Vacuum heat treatment of 0Cr17Ni4Cu4Nb stainless steel base[J]. Heat Treatment of Metals, 2021,46(8):189−192. (贺利. 0Cr17Ni4Cu4Nb不锈钢底座的真空热处理[J]. 金属热处理, 2021,46(8):189−192.

    He Li. Vacuum heat treatment of 0 Cr17 Ni4 Cu4 Nb stainless steel base[J]. Heat Treatment of Metals, 2021, 46(8): 189-192.
    [13] Zhang Xuezhen, Lü Kang, Shi Yaocheng, et al. Study on drill thrust and chip in ultrasonic vibration drilling of 0Cr17Ni4Cu4Nb[J]. Machine Tool & Hydraulics, 2018,46(19):53−55, 66. (张学忱, 吕康, 史尧臣, 等. 0Cr17Ni4Cu4Nb超声振动钻削的钻削力和切屑研究[J]. 机床与液压, 2018,46(19):53−55, 66.

    Zhang Xuezhen, Lv Kang, Shi Yaocheng, et al. Study on drill thrust and chip in ultrasonic vibration drilling of 0 Cr17 Ni4 Cu4 Nb[J]. Machine Tool & Hydraulics, 2018, 46(19): 53-55, 66.
    [14] Hu Chunyan, Liu Xinling, Tao Chunhu, et al. Failure analysis on 0Cr17Ni4Cu4Nb screws[J]. Journal of Materials Engineering, 2012,(12):21−23, 28. (胡春燕, 刘新灵, 陶春虎, 等. 0Cr17Ni4Cu4Nb钢制螺钉断裂原因分析[J]. 材料工程, 2012,(12):21−23, 28.

    Hu Chunyan, Liu Xinling, Tao Chunhu, et al. Failure analysis on 0 Cr17 Ni4 Cu4 Nb screws[J]. Journal of Materials Engineering, 2012(12): 21-23, 28.
    [15] He Zhu, Zhao Shougen, Yang Jialing, et al. Experimental investigation of the dynamic material property of stainless steel: 0Crl7Ni4Cu4Nb[J]. Journal of Materials Science and Engineering, 2007,25(3):418−421. (何著, 赵寿根, 杨嘉陵, 等. 0Crl7Ni4Cu4Nb不锈钢动态力学性能研究[J]. 材料科学与工程学报, 2007,25(3):418−421.

    He Zhu, Zhao Shougeng, Yang Jialing, et al. Experimental investigation of the dynamic material property of stainless steel: 0 Crl7 Ni4 Cu4 Nb[J]. Journal of Materials Science and Engineering, 2007, 25(3): 418-421.
    [16] 王建军. 典型金属塑性流动中反常应力峰及其本构关系[D]. 西安: 西北工业大学, 2017.

    Wang Jianjun. Anomalous stress peak in the plastic flow of typical metals and its constitutive model[D]. Xi, an: Northwestern Polytechnical University, 2017.
    [17] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983,21:541−548.
    [18] Liang R, Khan A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures[J]. International Journal of Plasticity, 1999,15(9):869−890. doi: 10.1016/S0749-6419(99)00016-9
    [19] 王礼立. 冲击动力学进展[M]. 北京: 中国科学技术大学出版社, 1992.

    Wang Lili. Advances in impact dynamics[M]. Beijng: University of Science and Technology of China Press, 1992.
    [20] Fang Jian, Wei Yijing, Wang Chengzhong. Analytical measurement and mechanical study on the tensile strain hardening exponent[J]. Journal of Plasticity Engineering, 2003,10(3):12−17. (方健, 魏毅静, 王承忠. 拉伸应变硬化指数的解析测定及力学分析[J]. 塑性工程报, 2003,10(3):12−17.

    Fang Jian, Wei Yijing, Wang Chengzhong. Analytical measurement and mechanical study on the tensile strain hardening exponent[J]. Journal of Plasticity Engineering, 2003, 10(3): 12-17.
    [21] Sun Xuewei, Ling Yongzhuo, Sun Jisong, et al. A method of determinig strain-hardening exponents[J]. Journal of Mechanical Strength, 1995,17(4):27−28. (孙学伟, 令永卓, 孙吉松, 等. 材料硬化指数n的确定方法[J]. 机械强度, 1995,17(4):27−28.

    Sun Xuewei, Ling Yongzhuo, Sun Jisong, et al. A method of determinig strain-hardening exponents[J]. Journal of Mechanical Strength, 1995, 17(4): 27-28.
    [22] 曹育菡. Ni-Co-Cr-Fe基高熵合金的应变强化研究[D]. 西安: 西安理工大学, 2020.

    Cao Yuhan. Study on strain hardening of Ni-Co-Cr-Fe based high entropy alloys[D]. Xi'an: Xi'an University of Technology, 2020.
    [23] 王相宇. 高温合金GH4169的切削加工性评价方法和本构模型研究[D]. 济南: 山东大学, 2016.

    Wang Xiangyu. Study on cutting performance evaluation and constitutive model of superalloy GH4169[D]. Jinan: Shandong University, 2016.
    [24] 姬芳芳. 高速切削GH4169切削区材料塑性行为研究[D]. 长春: 长春工业大学, 2018.

    Ji Fangfang. Study on cutting performance evaluation and constitutive model of superalloy GH4169[D]. Changchun: Changchun Industrial College, 2018.
    [25] Wang Xiangyu, Huang Chuanzhen, Zou Bin. Dynamic behavior and a modified Johnson–Cook constitutive model of Inconel 718 at high strain rate and elevated temperature[J]. Materials Science & Engineering A, 2013, 58(15): 385-390.
    [26] Yang Xuemei, Guo Hongzhen, Yao Zekun. Strain rate sensitivity, temperature sensitivity, and strain hardening during the isothermal compression of BT25y alloy[J]. Journal of Materials Research, 2016,31(18):2863−2875. doi: 10.1557/jmr.2016.294
    [27] Tang Changguo, Zhu Jinhua, Zhou Huijiu. Phenomena and analysis of plastisity-increasing induced by high strain rate for some metallic materials[J]. Chinese Journal of Materials Research, 1996,(1):19−24. (唐长国, 朱金华, 周惠久. 金属材料拉伸的高应变率增塑现象及分析[J]. 材料研究学报, 1996,(1):19−24.

    Tang Changguo, Zhu Jinhua, Zhou Huijiu. Phenomena and analysis of plastisity-increasing induced by high strain rate for some metallic materials[J]. Chinese Journal of Materials Research, 1996(1): 19-24.
    [28] 冯端. 金属物理学-金属力学性能[M]. 北京: 科学出版社, 1999.

    Feng Duan. Metal physics-metal mechanical properties[M]. Beijng: Science Press, 1999.
    [29] 李庆生. 材料强度学[M]. 太原: 山西科学教育出版社, 1999.

    Li Qingsheng. Material strength[M]. Taiyuan: Shanxi Science Education Press, 1999.
    [30] 李川平. Ti6Al4V钛合金动态本构模型与高速切削有限元模拟研究[D]. 兰州: 兰州理工大学, 2011.

    Li Chuangping. The research on dynamic constitutive model of Ti6Al4V titanium alloy and finite element simulation of high-speed cutting[D]. Lanzhou: Lanzhou University of Technology, 2011.
    [31] Niu D X, Zhao C, Li D X, et al. Constitutive modeling of the flow stress behavior for the hot deformation of Cu-15Ni-8Sn alloys[J]. Frontiers in Materials, 2022,7(12):577867.
    [32] Ma Bin, Li Ping, Liang Qiang. Comparison on high-temperature flow behavior of HNi55-7-4-2 alloy predicted by modified JC model and BP-ANN algorithm[J]. Chinese Journal of Materials Research, 2021,45(1):92−99. (马斌, 李平, 梁强. 基于修正JC模型和BP-ANN算法预测HNi55-7-4-2合金高温流变行为的对比[J]. 机械工程材料, 2021,45(1):92−99.

    Ma Bing, Li Ping, Liang Qiang. Comparison on high-temperature flow behavior of HNi55-7-4-2 alloy predicted by modified JC model and BP-ANN algorithm[J]. Chinese Journal of Materials Research, 2021, 45(1): 92-99.
    [33] Su Nan, Chen Minghe, Xie Lansheng, et al. Dynamic mechanical characteristics and constitutive model of TC2 Ti-alloy[J]. Materials for Mechanical Engineering, 2021,35(3):201−208. (苏楠, 陈明和, 谢兰生, 等. TC2钛合金的动态力学特征及其本构模型[J]. 材料研究学报, 2021,35(3):201−208.

    Su Nan, Chen Minghe, Xie Lansheng, et al. Dynamic mechanical characteristics and constitutive model of TC2 Ti-alloy[J]. Materials for Mechanical Engineering, 2021, 35(3): 201-208.
    [34] Jia Haishen, Luo Wencui, Zhang Jilin, et al. Study on dynamic mechanical properties and constitutive model of 022Cr18Ni14Mo2 stainless steel under impact load[J]. Iron Steel Vanadium Titanium, 2022,43(2):178−185. (贾海深, 罗文翠, 张继林, 等. 冲击载荷下022Cr18Ni14Mo2不锈钢动态力学特性及其本构模型研究[J]. 钢铁钒钛, 2022,43(2):178−185. doi: 10.7513/j.issn.1004-7638.2022.02.027

    Jia Haishen, Luo Wencui, Zhang Jilin, et al. Study on dynamic mechanical properties and constitutive model of 022 Cr18 Ni14 Mo2 stainless steel under impact load[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 178-185. doi: 10.7513/j.issn.1004-7638.2022.02.027
  • 期刊类型引用(0)

    其他类型引用(1)

  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  102
  • PDF下载量:  12
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-02-06
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2023-12-28

目录

/

返回文章
返回