Establishment of a constitutive model of aviation stainless steel 0Cr17Ni4Cu4Nb considering the coupling effects of strain, strain rate and temperature
-
摘要: 航空不锈钢0Cr17Ni4Cu4Nb具有优良的特性,广泛应用在各个机械的重要零部件上,零件的加工过程伴随着大应变、高温和高应变率,基于此考虑耦合关系建立能够真实反映切削力学性能的本构模型,为切削仿真提供可靠的数据。以航空不锈钢0Cr17Ni4Cu4Nb为研究对象,利用万能试验机(UTM5305)和高温分离式霍普金森试验装置(Split Hopkinson Pressure Bar,SHPB,ALT1000)分别进行准静态压缩试验(温度为25 ℃,应变率为0.1、0.01、0.001s−1)和动态冲击试验(温度为25、350、500、650 ℃,应变率为750、
1500 、2000、2600 、3500 、4500 s−1),获得该材料的应力应变关系,并分析其力学性能,结果表明该材料具有应变硬化效应、温度软化效应、应变率强化效应和增塑效应。综合应变、应变率和温度三者相互作用,建立耦合作用下的Johnson-Cook(JC)本构方程,统计分析了试验数据与预测数据(原JC本构方程和修正JC本构方程数据),原JC本构方程的相关系数(R)和平均相对误差(AARE)分别为0.96833 和4.77%;修正JC本构方程的相关系数(R)和平均相对误差(AARE)分别为0.987513 和0.51%,表明修正JC本构方程更加准确、可靠预测高应变率下应力应变的关系。Abstract: The aviation stainless steel 0Cr17Ni4Cu4Nb has excellent characteristics and is widely used in important parts of various machines. The machining process of these parts is accompanied by large strain, high temperature and high strain rate. Based on this coupling relationship, a constitutive model that can truly reflect the cutting mechanical properties is established to provide reliable data for cutting simulation. This paper sets the aviation stainless steel 0Cr17Ni4Cu4Nb as the research object, and uses the universal testing machine (UTM5305) and the split Hopkinson Pressure Bar (SHPB, ALT1000) to carry out the quasi-static compression tests (temperature: 25 ℃, strain rate: 0.1, 0.01, 0.001 s−1) and dynamic impact tests (temperature: 25, 350, 500 and 650 ℃, strain rate: 750,1500 ,2000 ,2600 ,3500 and4500 s−1), respectively. The stress-strain relationship of the material is obtained, and its mechanical properties are analyzed. It is shown that the material exhibits strain hardening effect, temperature softening effect, strain rate strengthening effect and plasticizing effect. Combining the interaction of strain, strain rate and temperature, the Johnson-Cook (JC) constitutive equation under the coupling action is established. The test data and prediction data (the original and modified JC constitutive equation) are statistically analyzed. The correlation coefficient (R) and the average phase error (AARE) of the original JC constitutive equation are0.96833 and 4.77%, respectively. The correlation coefficient (R) and average relative error (AARE) of the modified JC constitutive equation are0.987513 and 0.51%, respectively, indicating that the modified JC constitutive equation is more accurate and reliable in predicting the stress-strain relationship at high strain rates. -
0. 引言
冷轧双相钢(DP钢)作为第1代先进高强钢(Advanced High Strength Steel),具有屈服强度低、初始加工硬化率高以及良好强塑性匹配的特点,广泛应用于白车身零部件[1]。传统DP钢显微组织由铁素体(F)与马氏体(M)组成,其中F/M的比例决定了强度/塑性的匹配[2]。然而,随着强度的提升、塑性衰减较快,限制了复杂零件的成形与应用。随着汽车制造业的发展与升级,安全与节能成为汽车评价的主要指标,对汽车用钢的生产提出了更高要求。面对汽车行业新发展需求及高强双相钢的应用限制,首钢联合北京科技大学成功开发了增强成形性双相钢(DH钢),在传统双相钢两相组织基础上引入少量亚稳态残余奥氏体,在受力变形状态下,残余奥氏体发生相变诱导塑性(即TRIP效应),使材料强度与塑性得到提升[3],更适合用于复杂结构件与安全件的加工成形,作为新型先进高强钢极具市场应用前景。
目前,关于DH钢的研究主要集中在退火热处理工艺对组织性能的影响方面[4-6],关于DH钢与DP钢显微组织、力学性能及形变机制的差异报道较少。笔者选取典型牌号DH780与DP780作为研究对象,对不同应变速率下钢的力学性能及扩孔性能进行了对比分析,探究了增强成形性双相钢强韧性机制,对汽车选材与DH钢的应用推广具有重要参考意义。
1. 试验材料与方法
试验材料为某钢厂采用260 t转炉→LF+RH双精炼→板坯连铸→2250热连轧→2180酸连轧→2030连续退火工艺路径生产的厚度为1.2 mm 的DH780与DP780冷轧高强钢,其主要化学成分如表1所示。传统DP780采用低C-Mn-Si-Cr-Nb-Ti成分体系,低碳设计保证良好焊接性能;Mn为奥氏体稳定元素及发挥固溶强化作用[1];Si为铁素体强化元素,抑制碳化物的生成;Cr发挥固溶强化作用,同时提高淬透性;固溶Nb在高温奥氏体晶界偏聚,对高温奥氏体晶界具有拖曳作用,可细化形变奥氏体晶粒,进而细化相变组织;Nb、Ti具有第二相析出强化作用[7]。增强成形性双相钢DH780较DP780具有更高C含量,目的是实现两相区均热过程具有足够C原子向奥氏体富集,提升奥氏体(残余奥氏体)的稳定性;Al元素与Si元素作用相似,促进铁素体相变、C原子扩散与抑制碳化物析出,同时Al具有推迟珠光体相变的作用[8]。
表 1 试验钢主要化学成分Table 1. Main chemical compositions of experimental steels% 牌号 C Mn Si P S Cr Al Nb Ti DH780 0.17~0.19 2.1~2.3 0.4~0.5 ≤0.010 ≤0.005 0.18~0.21 0.7~0.9 0.02~0.04 - DP780 0.09~0.12 2.0~2.4 0.5~0.6 ≤0.010 ≤0.005 0.28~0.30 - 0.02~0.03 0.02~0.04 利用Empyrean型X射线衍射仪(XRD)对试验钢中残余奥氏体含量进行检测。试验采用Co靶、步宽为0.02°、扫描速率1°/min、扫描角度30°~130°、管电压40 kV、管电流200 mA。选取γ相中(200)、(220)、(311)衍射线与α相中(200)、(211)衍射线,利用五峰法对各晶面累计衍射强度进行计算得到残余奥氏体含量[9]。试验钢经抛光、4%硝酸酒精溶液侵蚀后分别在Zeiss金相显微镜与ZeissUItra55 型场发射扫描电子显微镜(SEM)下进行显微组织观察。经20%高氯酸酒精溶液电解抛光后进行电子背散射衍射(EBSD)表征。
为了研究板料冲压成形过程中的受力状态,同时考虑拉伸数据准确性,采用CMT5305型拉伸试验机分别以0.001、0.01、0.1 s−1的应变速率进行准静态拉伸试验,采用HTM5020型高速拉伸试验机分别以1、10、50、100、200、500、
1000 s−1的应变速率进行动态拉伸试验。按照ISO 26203-2-2011《金属材料.高应变率拉伸试验.第2部分:伺服液压和其他试验系统》要求,采用钼丝切割机将钢板加工成高速拉伸试样,线切割加工后用砂纸打磨去除线切割切割痕,以保证试样切割面平整光滑,试样尺寸如图1所示。扩孔试验能够反映板料凸缘翻边性能,为了对比成形过程凸缘翻边能力,按照ISO16630标准进行扩孔试验。2. 试验结果与分析
2.1 XRD对比分析
图2为DH780与DP780试样XRD衍射图谱,可知,DH780存在(200)γ、(220)γ、(311)γ特征峰,根据公式(1)[10]计算,可知DH780中残余奥氏体含量为5.1%,而DP780中几乎不存在残余奥氏体。
$$ {V}_{{\rm{A}}}=\frac{1-{V}_{{\rm{C}}}}{1+G\dfrac{{I}_{{\mathrm{M}}_{{\left(\mathrm{h}\mathrm{k}\mathrm{l}\right)}_{\mathrm{i}}}}}{{{{I}_{\mathrm{A}}}_{\left(\mathrm{h}\mathrm{k}\mathrm{l}\right)}}_{\mathrm{j}}}} $$ (1) 式中,VA为奥氏体相的体积分数,%;VC为碳化物相总量的体积分数,%;IM(hkl)i为马氏体(hkl)i晶面衍射线的累计强度;IA(hkl)i为奥氏体(hkl)i晶面衍射线的累计强度;G为奥氏体(hkl)晶面与马氏体(hkl)晶面所对应的强度因子之比。
2.2 显微组织对比分析
图3为DH780与DP780光学显微组织形貌,二者均为铁素体与马氏体,其中DH780晶粒均匀细小,马氏体组织分布更为弥散,而DP780组织中存在大块状多边形铁素体与明显的碳化物析出,带状组织较明显。由于光学显微镜无法分辨是否存在残余奥氏体与马氏体的分布形态,需要借助扫描电镜与EBSD进一步表征。在扫描电镜下发现,DH780与DP780显微组织中马氏体均为板条马氏体,其中DP780中马氏体以淬火态为主,而DH780中存在少量回火马氏体,分析与过时效过程中马氏体中碳化物析出有关,如图4、5所示。
综合SEM与EBSD结果显示,DH780中残余奥氏体呈块状、薄膜状、链状与细小粒状在铁素体基体中分布[11],其主要以3种形式分别位于铁素体界面(F/F,γⅠ)、位于铁素体或马氏体晶粒中(M&F,γⅡ)、位于铁素体和马氏体交界(F/M,γⅢ),且多数位于相界面与铁素体晶界处,如图4与图5所示。点链状或者薄膜长条状分布的残余奥氏体较稳定,一般在应力加载过程的中期才发生应力诱导马氏体相变;块状形式存在的残余奥氏体在施加应力初期优先发生TRIP效应。残余奥氏体γⅢ在F/M边界呈亮白边圈,主要因为两相区退火过程中Mn元素短程扩散致使在F/M边界形成富Mn区,富Mn区淬透性较高,局部区域Ms点下降,奥氏体稳定性提高,以残余奥氏体形式保留至室温,与岛内马氏体组织具有不同的色差效应。
2.3 力学性能及扩孔性能对比分析
2.3.1 不同应变速率下力学性能对比分析
钢铁材料变形本质是位错滑移与增殖的过程。冷轧双相钢以马氏体与铁素体组织为主,两相中位错主要以无钉扎自由态存在,在低应变速率下(含准静态),铁素体内可动位错优先开启进行滑移与增殖,故DP780与DH780应力-应变曲线均无明显屈服现象,如图6所示。应变速率增加初期,DP780和DH780的屈服强度、抗拉强度随应变速率的增加均呈现小幅度增加的趋势。在准静态条件下,当应变速率达到10 s−1时,屈服强度、抗拉强度出现较为明显的提升,之后随着应变速率增加,强度不断升高。
图7为应变速率对强塑性指标的影响。应变速率的提高改变了位错滑移与增殖机制,高应变速率下材料强塑性均明显增加。在应变速率由0.001 s−1增加至
1000 s−1过程中,DP780屈服强度由531 MPa增加到724 MPa,增加了36%,抗拉强度由876 MPa增加到1021 MPa,增加了16%;而DH780屈服强度由500 MPa增加到690 MPa,增加了38%,抗拉强度由796 MPa增加到997 MPa,增加了26%,说明DH780较DP780表现出较强的应变速率敏感性特征。由于DH780基体存在一定量的残余奥氏体,奥氏体面心立方结构(FCC)中可动滑移系多,有利于位错滑移,更为重要的是变形过程应变速率的提高为残余奥氏体转变为马氏体(即TRIP效应)提供了足够动力,使变形区域的塑性进一步提升,从而延缓裂纹的形成与扩展,提高材料的变形能力。残余奥氏体的引入使DH780具有TRIP效应的增塑机制,可有效降低位错运动阻力,较传统DP780表现出更高强塑特性。随着应变速率提升,DH780强塑积由27.06 GPa·%增加至38.83 GPa·%,其材料吸能性能显著增强。表2为试验钢应变速率0.01 s−1条件下的准静态力学性能,DP780和DH780垂直轧制方向(横向)的强度均高于轧制方向,DH780的断后延伸率均达到30%以上,整体断后延伸率较DP780高6.9~12.5个百分点,塑性指标显著优于DP780。
表 2 准静态力学性能(ε=0.01 s−1)Table 2. Quasi-static mechanical properties(ε=0.01 s−1)牌号 方向 屈服强度/MPa 抗拉强度/MPa 断后伸长率/% 强塑积/(GPa·%) DH780 0° 501 823 31.3 25.76 45° 487 804 31.6 25.41 90° 522 831 30.8 25.59 DP780 0° 511 818 19.5 18.41 45° 529 821 24.7 17.82 90° 541 843 18.3 16.27 2.3.2 扩孔性能对比分析
根据GB/T 24524-2021《金属材料 薄板和薄带 扩孔试验方法》分别对试验钢DH780和DP780进行扩孔率检测,测量3次取平均值。DP780试样扩孔率为50.32%,而DH780试样扩孔率达到74.61%,较DP780提升48.27%。扩孔试验过程中与锥头接触的板料下表面(凸缘翻边后为内侧)受压应力作用,而板料上表面(凸缘翻边后为外侧)受张应力作用。扩孔过程中板料上表面变形程度大于下表面,随着扩孔直径的增大,凸缘翻边外侧受到的张应力越大,当超过材料强度极限时出现裂纹萌生及扩展,裂纹由凸缘翻边外侧向内侧延伸,扩展路径与板料厚度方向呈45°分布。由于板带横向强度高,塑性指标低于轧制方向,裂纹多在垂直轧向的两侧出现,具体如图8所示。
宏观而言由于铁素体与马氏体硬度、弹性模量不同,受力过程两相变形能力存在显著差异,导致在铁素体/马氏体两相界面处产生应力集中,当相界面处应力超过两相结合力时开始萌生裂纹,并且随着变形过程裂纹沿铁素体/马氏体相界面处扩展。微观组织观察可知,DH780与DP780显微组织均以铁素体与弥散分布马氏体为主,组织细小均匀,扩孔变形初期,位错在铁素体中滑移,并在晶界与相界处产生塞积,随着应力提高,马氏体位错开启与增殖,在相界面处不断交织与缠结,形成较大应力集中,进而发展成为裂纹源。试验钢DH780中存在约5%残余奥氏体,奥氏体具有更多滑移系可有效减缓位错塞积,同时应力作用下残余奥氏体TRIP效应更为显著,从而延缓了应力集中与裂纹源的形成[12]。
图9为试验钢扩孔试验断口微观形貌,两者均为韧性断裂,DH780韧窝较大且深、撕裂脊明显,而DP780韧窝相对较浅、无明显撕裂脊。亦说明扩孔过程中DH780抗局部变形能力更强,具有更高的塑性与扩孔性能。
3. 结论
1) 试验钢DH780由铁素体、马氏体、残余奥氏体组成,其中残余奥氏体含量约5.1%,呈块状、薄膜状、链状与细小粒状,位于相界面与铁素体晶界处。
2) 随着应变速率的提升,材料屈服强度、抗拉强度均呈现增强趋势,DH780较DP780具有更高的应变速率敏感性特征,DH780强塑积增加至38.83 GPa·%,吸能性能显著增强。
3) DH780残余奥氏体在塑性变形过程中转变为马氏体,TRIP效应显著实现材料塑性提升;同时奥氏体具有更多滑移系可有效减缓位错塞积、延缓应力集中与裂纹源的形成,使得DH780较DP780具有更高扩孔率,扩孔率达到74.61%。
-
表 1 0Cr17Ni4Cu4Nb不锈钢化学成分
Table 1. Chemical composition of 0Cr17Ni4Cu4Nb stainless steel
% C Si Cr Ni Mn P S Cu Nb Fe 0.06 0.80 16.25 3.60 0.82 0.030 0.022 3.83 0.28 Bal. 表 2 准静态下不同应变率和应变处的强化指数$ n $
Table 2. Strengthening exponent $ n $ at different strain rates and strains under quasi-static state
$ \dot \varepsilon /{{\text{s}}^{ - 1}} $ n $ \varepsilon $=0.20 $ \varepsilon $=0.25 $ \varepsilon $=0.30 $ \varepsilon $=0.35 $ \varepsilon $=0.40 $ \varepsilon $=0.45 0.001 0.1418 0.1250 0.0625 0.0335 0.0210 0.0425 0.01 0.1612 0.0849 0.0611 0.0239 0.0119 0.0390 0.1 0.1187 0.0644 0.0260 0.0004 0.0145 0.0267 表 3 准静态试样变形量
Table 3. Deformation of quasi-static specimens
应变率/$ {{\text{s}}^{ - 1}} $ 直径/mm 厚度/mm 0.001 7.29 4.31 0.01 7.43 4.11 0.1 7.67 3.78 表 4 动态试样变形量(T=25 ℃和T=650 ℃)
Table 4. Deformation of quasi-static specimens
T/℃ $ \dot \varepsilon /{{\text{s}}^{ - 1}} $ $ d/{\text{mm}} $ $ h/{\text{mm}} $ 25 750 3.12 2.68 1500 3.18 2.47 2 000 3.64 2.06 2600 3.77 1.86 3500 4.01 1.65 4500 4.42 0.76 650 750 3.36 2.40 1500 3.55 2.22 2 000 3.71 1.97 2600 4.13 1.56 3500 4.37 1.51 4500 4.47 0.77 表 5 应变项参数值
Table 5. Parameter values of strain item
B0 B1 B2 B3 B4 509.01581 5908.2858 − 21498.54 35937.295 − 23318.67 表 6 应变率项参数值
Table 6. Parameter values of strain rate item
C0 C1 C2 C3 C4 − 2.42266 0.69941 − 0.06371 0.00192 − 11.18017 C5 C6 C7 C8 C9 3.04559 − 9.69615 1.58625 0.18026 − 0.06239 表 7 温度项参数值
Table 7. Parameter values of temperature item
a0 a1 a2 a3 a4 a5 − 67.50836 9.61375 − 118.52129 333.90202 15.06135 − 1.08320 a6 a7 a8 a9 a10 0.02552 1.07963 0.00000 − 3.53005 0.39414 -
[1] 郭亚欢. 0Cr17Ni4Cu4Nb不锈钢热处理工艺及性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.Guo Yahuan. Effect of heat treatment processes on properties of 0Cr17Ni4Cu4Nb steel[D]. Harbin: Harbin Engineering University, 2011. [2] 吕义郎. 0Cr17Ni4Cu4Nb不锈钢薄壁环形件胀形工艺研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.Lü Yilang. Bulging process of 0Cr17Ni4Cu4Nb stainless steel thin-walled ring research[D]. Harbin: Harbin Engineering University, 2018. [3] 夏德贵. 0Cr17Ni4Cu4Nb马氏体沉淀硬化不锈钢耐海水腐蚀性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.Xia Degui. Seawater corrosion resistance property of 0Cr17Ni4Cu4Nb martensitic precipitation hardening stainless steel[D]. Harbin: Harbin Engineering University, 2007. [4] 朱凯旋. 0Cr17Ni4Cu4Nb燃气轮机叶片材料砂带磨削的表面质量研究[D]. 重庆: 重庆大学, 2006.Zhu Kaixuan. Study on surface quality of the material 0Cr17Ni4Cu4Nb gas turbine blade ground by coated abrasive belt[D]. Chongqing: Chongqing University, 2006. [5] Remington B A, Bazan G, Belak J, et al. Materials science under extreme conditions of pressure and strain rate[J]. Metallurgical & Materials Transactions A, 2004,35(9):2587−2607. [6] Tian Xianhua, Yan Kuicheng, Zhao Jun, et al. Properties at elevated temperature and high strain rate and establishment of Johnson-Cook constitutive model for GH2132[J]. China Mechanical Engineering, 2022,33(7):872−881. (田宪华, 闫奎呈, 赵军, 等. GH2132高温高应变率下力学性能分析与Johnson-Cook本构模型的建立[J]. 中国机械工程, 2022,33(7):872−881.Tian Xianhua, Yan Kuicheng, Zhao Jun, et al. Properties at elevated temperature and high strain rate and establishment of Johnson-Cook constitutive model for GH2132[J]. China Mechanical Engineering, 2022, 33(7): 872-881. [7] Jamwal A, Agrawal R, Sharma M, et al. Application of optimization techniques in metal cutting operations: A biliometric analysis[J]. Materials Today: Proceedings, 2020,38(1):365−370. [8] Zhang Jilin, Jia Haishen, Yi Xiangbin, et al. Dynamic mechanical properties and comparison of two constitutive models for martensitic stainless steel 0Cr17Ni4Cu4Nb[J]. Materials Research Express, 2021,8(10):106501. doi: 10.1088/2053-1591/ac29f5 [9] Chen G, Ren C, Yang X, et al. Evidence of thermoplastic instability about segmented chip formation process for Ti-6Al-4V alloy based on the finite-element method[J]//Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering, 2011, 225(6): 1407-1417. [10] Shi Jing, Zhang Weiqiang, Guo Jin. Constitutive model of plastic deformation for metal[J]. Materials Reports, 2010,24(4):82−85. (是晶, 张伟强, 郭金. 金属塑性变形的本构模型研究[J]. 材料导报, 2010,24(4):82−85.Shi Jing, Zhang Weiqiang, Guo Jin. Constitutive model of plastic deformation for metal[J]. Materials Reports, 2010, 24(4): 82-85. [11] Zhan Lishui, Liu Cheng, Ye Junqing, et al. Research on refinement of heat treatment for improving hardness of 17-4PH (0Cr17Ni4Cu4Nb) forgings[J]. Forging & Stamping Technology, 2021,46(9):212−215. (占立水, 刘成, 叶俊青, 等. 改善17-4PH(0Cr17Ni4Cu4Nb)锻件硬度的热处理精细化研究[J]. 锻压技术, 2021,46(9):212−215.Zhan Lishui, Liu Cheng, Ye Junqing, et al. Research on refinement of heat treatment for improving hardness of 17-4 PH (0 Cr17 Ni4 Cu4 Nb) forgings[J]. Forging & Stamping Technology, 2021, 46(9): 212-215. [12] He Li. Vacuum heat treatment of 0Cr17Ni4Cu4Nb stainless steel base[J]. Heat Treatment of Metals, 2021,46(8):189−192. (贺利. 0Cr17Ni4Cu4Nb不锈钢底座的真空热处理[J]. 金属热处理, 2021,46(8):189−192.He Li. Vacuum heat treatment of 0 Cr17 Ni4 Cu4 Nb stainless steel base[J]. Heat Treatment of Metals, 2021, 46(8): 189-192. [13] Zhang Xuezhen, Lü Kang, Shi Yaocheng, et al. Study on drill thrust and chip in ultrasonic vibration drilling of 0Cr17Ni4Cu4Nb[J]. Machine Tool & Hydraulics, 2018,46(19):53−55, 66. (张学忱, 吕康, 史尧臣, 等. 0Cr17Ni4Cu4Nb超声振动钻削的钻削力和切屑研究[J]. 机床与液压, 2018,46(19):53−55, 66.Zhang Xuezhen, Lv Kang, Shi Yaocheng, et al. Study on drill thrust and chip in ultrasonic vibration drilling of 0 Cr17 Ni4 Cu4 Nb[J]. Machine Tool & Hydraulics, 2018, 46(19): 53-55, 66. [14] Hu Chunyan, Liu Xinling, Tao Chunhu, et al. Failure analysis on 0Cr17Ni4Cu4Nb screws[J]. Journal of Materials Engineering, 2012,(12):21−23, 28. (胡春燕, 刘新灵, 陶春虎, 等. 0Cr17Ni4Cu4Nb钢制螺钉断裂原因分析[J]. 材料工程, 2012,(12):21−23, 28.Hu Chunyan, Liu Xinling, Tao Chunhu, et al. Failure analysis on 0 Cr17 Ni4 Cu4 Nb screws[J]. Journal of Materials Engineering, 2012(12): 21-23, 28. [15] He Zhu, Zhao Shougen, Yang Jialing, et al. Experimental investigation of the dynamic material property of stainless steel: 0Crl7Ni4Cu4Nb[J]. Journal of Materials Science and Engineering, 2007,25(3):418−421. (何著, 赵寿根, 杨嘉陵, 等. 0Crl7Ni4Cu4Nb不锈钢动态力学性能研究[J]. 材料科学与工程学报, 2007,25(3):418−421.He Zhu, Zhao Shougeng, Yang Jialing, et al. Experimental investigation of the dynamic material property of stainless steel: 0 Crl7 Ni4 Cu4 Nb[J]. Journal of Materials Science and Engineering, 2007, 25(3): 418-421. [16] 王建军. 典型金属塑性流动中反常应力峰及其本构关系[D]. 西安: 西北工业大学, 2017.Wang Jianjun. Anomalous stress peak in the plastic flow of typical metals and its constitutive model[D]. Xi, an: Northwestern Polytechnical University, 2017. [17] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983,21:541−548. [18] Liang R, Khan A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures[J]. International Journal of Plasticity, 1999,15(9):869−890. doi: 10.1016/S0749-6419(99)00016-9 [19] 王礼立. 冲击动力学进展[M]. 北京: 中国科学技术大学出版社, 1992.Wang Lili. Advances in impact dynamics[M]. Beijng: University of Science and Technology of China Press, 1992. [20] Fang Jian, Wei Yijing, Wang Chengzhong. Analytical measurement and mechanical study on the tensile strain hardening exponent[J]. Journal of Plasticity Engineering, 2003,10(3):12−17. (方健, 魏毅静, 王承忠. 拉伸应变硬化指数的解析测定及力学分析[J]. 塑性工程报, 2003,10(3):12−17.Fang Jian, Wei Yijing, Wang Chengzhong. Analytical measurement and mechanical study on the tensile strain hardening exponent[J]. Journal of Plasticity Engineering, 2003, 10(3): 12-17. [21] Sun Xuewei, Ling Yongzhuo, Sun Jisong, et al. A method of determinig strain-hardening exponents[J]. Journal of Mechanical Strength, 1995,17(4):27−28. (孙学伟, 令永卓, 孙吉松, 等. 材料硬化指数n的确定方法[J]. 机械强度, 1995,17(4):27−28.Sun Xuewei, Ling Yongzhuo, Sun Jisong, et al. A method of determinig strain-hardening exponents[J]. Journal of Mechanical Strength, 1995, 17(4): 27-28. [22] 曹育菡. Ni-Co-Cr-Fe基高熵合金的应变强化研究[D]. 西安: 西安理工大学, 2020.Cao Yuhan. Study on strain hardening of Ni-Co-Cr-Fe based high entropy alloys[D]. Xi'an: Xi'an University of Technology, 2020. [23] 王相宇. 高温合金GH4169的切削加工性评价方法和本构模型研究[D]. 济南: 山东大学, 2016.Wang Xiangyu. Study on cutting performance evaluation and constitutive model of superalloy GH4169[D]. Jinan: Shandong University, 2016. [24] 姬芳芳. 高速切削GH4169切削区材料塑性行为研究[D]. 长春: 长春工业大学, 2018.Ji Fangfang. Study on cutting performance evaluation and constitutive model of superalloy GH4169[D]. Changchun: Changchun Industrial College, 2018. [25] Wang Xiangyu, Huang Chuanzhen, Zou Bin. Dynamic behavior and a modified Johnson–Cook constitutive model of Inconel 718 at high strain rate and elevated temperature[J]. Materials Science & Engineering A, 2013, 58(15): 385-390. [26] Yang Xuemei, Guo Hongzhen, Yao Zekun. Strain rate sensitivity, temperature sensitivity, and strain hardening during the isothermal compression of BT25y alloy[J]. Journal of Materials Research, 2016,31(18):2863−2875. doi: 10.1557/jmr.2016.294 [27] Tang Changguo, Zhu Jinhua, Zhou Huijiu. Phenomena and analysis of plastisity-increasing induced by high strain rate for some metallic materials[J]. Chinese Journal of Materials Research, 1996,(1):19−24. (唐长国, 朱金华, 周惠久. 金属材料拉伸的高应变率增塑现象及分析[J]. 材料研究学报, 1996,(1):19−24.Tang Changguo, Zhu Jinhua, Zhou Huijiu. Phenomena and analysis of plastisity-increasing induced by high strain rate for some metallic materials[J]. Chinese Journal of Materials Research, 1996(1): 19-24. [28] 冯端. 金属物理学-金属力学性能[M]. 北京: 科学出版社, 1999.Feng Duan. Metal physics-metal mechanical properties[M]. Beijng: Science Press, 1999. [29] 李庆生. 材料强度学[M]. 太原: 山西科学教育出版社, 1999.Li Qingsheng. Material strength[M]. Taiyuan: Shanxi Science Education Press, 1999. [30] 李川平. Ti6Al4V钛合金动态本构模型与高速切削有限元模拟研究[D]. 兰州: 兰州理工大学, 2011.Li Chuangping. The research on dynamic constitutive model of Ti6Al4V titanium alloy and finite element simulation of high-speed cutting[D]. Lanzhou: Lanzhou University of Technology, 2011. [31] Niu D X, Zhao C, Li D X, et al. Constitutive modeling of the flow stress behavior for the hot deformation of Cu-15Ni-8Sn alloys[J]. Frontiers in Materials, 2022,7(12):577867. [32] Ma Bin, Li Ping, Liang Qiang. Comparison on high-temperature flow behavior of HNi55-7-4-2 alloy predicted by modified JC model and BP-ANN algorithm[J]. Chinese Journal of Materials Research, 2021,45(1):92−99. (马斌, 李平, 梁强. 基于修正JC模型和BP-ANN算法预测HNi55-7-4-2合金高温流变行为的对比[J]. 机械工程材料, 2021,45(1):92−99.Ma Bing, Li Ping, Liang Qiang. Comparison on high-temperature flow behavior of HNi55-7-4-2 alloy predicted by modified JC model and BP-ANN algorithm[J]. Chinese Journal of Materials Research, 2021, 45(1): 92-99. [33] Su Nan, Chen Minghe, Xie Lansheng, et al. Dynamic mechanical characteristics and constitutive model of TC2 Ti-alloy[J]. Materials for Mechanical Engineering, 2021,35(3):201−208. (苏楠, 陈明和, 谢兰生, 等. TC2钛合金的动态力学特征及其本构模型[J]. 材料研究学报, 2021,35(3):201−208.Su Nan, Chen Minghe, Xie Lansheng, et al. Dynamic mechanical characteristics and constitutive model of TC2 Ti-alloy[J]. Materials for Mechanical Engineering, 2021, 35(3): 201-208. [34] Jia Haishen, Luo Wencui, Zhang Jilin, et al. Study on dynamic mechanical properties and constitutive model of 022Cr18Ni14Mo2 stainless steel under impact load[J]. Iron Steel Vanadium Titanium, 2022,43(2):178−185. (贾海深, 罗文翠, 张继林, 等. 冲击载荷下022Cr18Ni14Mo2不锈钢动态力学特性及其本构模型研究[J]. 钢铁钒钛, 2022,43(2):178−185. doi: 10.7513/j.issn.1004-7638.2022.02.027Jia Haishen, Luo Wencui, Zhang Jilin, et al. Study on dynamic mechanical properties and constitutive model of 022 Cr18 Ni14 Mo2 stainless steel under impact load[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 178-185. doi: 10.7513/j.issn.1004-7638.2022.02.027 期刊类型引用(0)
其他类型引用(1)
-