留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

以含钛碳化渣为集料制备碳纤维导电水泥砂浆

方喆禹 邓科兴 黄根 唐晨钧 宣明 王东 冉松林

方喆禹, 邓科兴, 黄根, 唐晨钧, 宣明, 王东, 冉松林. 以含钛碳化渣为集料制备碳纤维导电水泥砂浆[J]. 钢铁钒钛, 2023, 44(2): 103-110. doi: 10.7513/j.issn.1004-7638.2023.02.015
引用本文: 方喆禹, 邓科兴, 黄根, 唐晨钧, 宣明, 王东, 冉松林. 以含钛碳化渣为集料制备碳纤维导电水泥砂浆[J]. 钢铁钒钛, 2023, 44(2): 103-110. doi: 10.7513/j.issn.1004-7638.2023.02.015
Fang Zheyu, Deng Kexing, Huang Gen, Tang Chenjun, Xuan Ming, Wang Dong, Ran Songlin. Preparation of electrically conductive carbon fiber-cement mortars with carbonized titanium-bearing blast furnace slag as an aggregate[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 103-110. doi: 10.7513/j.issn.1004-7638.2023.02.015
Citation: Fang Zheyu, Deng Kexing, Huang Gen, Tang Chenjun, Xuan Ming, Wang Dong, Ran Songlin. Preparation of electrically conductive carbon fiber-cement mortars with carbonized titanium-bearing blast furnace slag as an aggregate[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 103-110. doi: 10.7513/j.issn.1004-7638.2023.02.015

以含钛碳化渣为集料制备碳纤维导电水泥砂浆

doi: 10.7513/j.issn.1004-7638.2023.02.015
基金项目: 国家自然科学基金项目(编号:U1860102);安徽高校协同创新项目(编号:GXXT-2020-072;GXXT-2019-015);国家级大学生创新创业计划项目(编号:202110360018S);安徽工业大学大学生创新创业计划项目(编号:2021027Y)。
详细信息
    作者简介:

    方喆禹,1999年出生,男,硕士研究生,主要从事冶金固废资源化利用的研究,E-mail:fangzheyu@ahut.edu.cn

    通讯作者:

    冉松林,1981年出生,男,博士,教授,E-mail:ransonglin@ahut.edu.cn

  • 中图分类号: X757,TU528

Preparation of electrically conductive carbon fiber-cement mortars with carbonized titanium-bearing blast furnace slag as an aggregate

  • 摘要: 以含钛高炉渣的碳化产物(含钛碳化渣)为集料,以碳纤维为导电相,制备了导电水泥砂浆。测试了含钛碳化渣-碳纤维水泥砂浆在不同碳纤维含量下的抗折、抗压强度和电阻率,并与标准砂-碳纤维水泥砂浆进行了性能比较。结果显示,以含钛碳化渣替代标准砂作为集料,不仅能显著提升碳纤维水泥砂浆的抗压和抗折强度,使其满足建筑水泥砂浆的要求,还将导电水泥砂浆的渗流阈值从0.5 %降低至0.2 %。当碳纤维含量为2.0 %时,以含钛碳化渣作为集料的水泥砂浆表现出优异的性能:28 d抗压和抗折强度分别为39.9 MPa和10.2 MPa,湿润条件下电阻率为10.7 Ω·m,干燥条件下电阻率为10.9 Ω·m。该研究既为含钛高炉渣的再利用提供了一种新思路,也为导电水泥基复合材料的制备提供了新选择。
  • 图  1  两种水泥砂浆28 d龄期抗压强度随碳纤维含量的变化

    Figure  1.  Effect of carbon fiber content on the compressive strength of cement mortars cured for 28 days with different aggregates

    图  2  两种水泥砂浆28 d龄期抗折强度随碳纤维含量的变化

    Figure  2.  Effect of carbon fiber content on the rupture strength of cement mortars cured for 28 days with different aggregates

    图  3  不同养护龄期下标准砂-碳纤维水泥砂浆电阻率随碳纤维含量的变化

    Figure  3.  Change of resistivity of standard sand-carbon fiber cement mortar with increasing carbon fiber content at different curing ages

    图  4  不同养护龄期下含钛碳化渣-碳纤维水泥砂浆电阻率随碳纤维含量的变化

    Figure  4.  Change of resistivity of titanium-containing carbonated slag-carbon fiber cement mortar with increasing carbon fiber content at different curing ages

    图  5  碳纤维含量对不同集料干燥水泥砂浆电阻率的影响

    Figure  5.  Effect of carbon fiber content on the electrical resistivity of dried cement mortars with different aggregates

    图  6  (a)含钛碳化渣-碳纤维水泥砂浆断面的SEM及 (b) C, (c) O, (d) Ti元素面扫描图像

    Figure  6.  (a) SEM image and (b) C, (c) O, (d) Ti elemental mapping of carbon fiber-cement mortar with carbonized slag as an aggregate

    图  7  (a)标准砂-碳纤维水泥砂浆断面的SEM及(b) C元素面扫描图像

    Figure  7.  (a) SEM image and (b) C elemental mapping of carbon fiber-cement mortar with standard sand as an aggregate

    表  1  短切碳纤维性质

    Table  1.   Properties of chopped carbon fibers

    长度/
    mm
    碳含量/
    %
    抗拉强度/
    GPa
    密度/
    (g·cm−3)
    体积电阻率/
    (Ω·cm)
    6≥ 953.81.761.5×10−3
    下载: 导出CSV

    表  2  碳纤维水泥砂浆的配合比

    Table  2.   Mix proportion of carbon fiber cement mortar

    编号碳纤维含量/%材料配比/g
    水泥碳化渣标准砂短切碳纤维
    10.2450135002250.90
    20.5450135002252.25
    30.8450135002253.60
    41.1450135002254.95
    51.5450135002256.75
    62.0450135002259.00
    70.2450013502250.90
    80.5450013502252.25
    90.8450013502253.60
    101.1450013502254.95
    111.5450013502256.75
    122.0450013502259.00
    下载: 导出CSV
  • [1] Zhu Fuxing, Jiao Yu, Li Liang, et al. The status and trends of material processing technology for vanadic titanomagnetite in Panxi area[J]. Mining and Metallurgy, 2021,30(4):26−32. (朱福兴, 焦钰, 李亮, 等. 攀西钒钛磁铁矿的选矿技术现状及发展趋势[J]. 矿冶, 2021,30(4):26−32. doi: 10.3969/j.issn.1005-7854.2021.04.005
    [2] Ou Yang, Sun Yongsheng, Yu Jianwen, et al. Research status and development prospect of utilization of vanadium-titanium magnetitie[J]. Journal of Iron and Steel Research, 2021,33(4):267−278. (欧杨, 孙永升, 余建文, 等. 钒钛磁铁矿加工利用研究现状及发展趋势[J]. 钢铁研究学报, 2021,33(4):267−278.
    [3] Xu Ying, Li Dandan, Yang Shanshan, et al. Research progress of comprehensive utilization of Ti-bearing blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2021,(1):23−31. (许莹, 李单单, 杨姗姗, 等. 含钛高炉渣综合利用研究进展[J]. 矿产综合利用, 2021,(1):23−31. doi: 10.3969/j.issn.1000-6532.2021.01.004
    [4] Hao Baichuan, Li Ziyue, Jia Dongfang, et al. Comprehensive utilization of blast furnace slag containing titanium[J]. Multipurpose Utilization of Mineral Resources, 2020,(6):1−6. (郝百川, 李子越, 贾东方, 等. 含钛高炉渣的综合利用[J]. 矿产综合利用, 2020,(6):1−6. doi: 10.3969/j.issn.1000-6532.2020.06.001
    [5] Fan G, Wang M, Dang J, et al. A novel recycling approach for efficient extraction of titanium from high-titanium-bearing blast furnace slag[J]. Waste Manage, 2021,120:626−634. doi: 10.1016/j.wasman.2020.10.024
    [6] Han Jiqing, Zhang Jing, Zhang Jiahao, et al. Recovery of Fe, V, and Ti in modified Ti-bearing blast furnace slag[J]. Transactions of Nonferrous Metals Society of China, 2022,32(1):333−344. (韩吉庆, 张晶, 张加豪, 等. 改性含钛高炉渣中铁、钒和钛的回收[J]. 中国有色金属学报: 英文版, 2022,32(1):333−344.
    [7] Zhang Yue, Wang Sijia, Xue Xiangxing. Recovery of titanium dioxide from titanium-bearing solution by using ammonium as precipitant[J]. CIESC Journal, 2012,63(10):3345−3349. (张悦, 王思佳, 薛向欣. 氨水沉淀法由含钛滤液提取二氧化钛[J]. 化工学报, 2012,63(10):3345−3349. doi: 10.3969/j.issn.0438-1157.2012.10.048
    [8] Zheng F, Guo Y, Qiu G, et al. A novel process for preparation of titanium dioxide from Ti-bearing electric furnace slag: NH4HF2-HF leaching and hydrolyzing process[J]. J. Hazard. Mater., 2018,344:490−498. doi: 10.1016/j.jhazmat.2017.10.042
    [9] Xue T, Wang L, Qi T, et al. Decomposition kinetics of titanium slag in sodium hydroxide system[J]. Hydrometallurgy, 2009, 95(1–2): 22-27.
    [10] Zhang Suxin, Yang Yangjun, Lu Ping, et al. Study on preparation of TiCl4 using titanium-containing carbonized blast furnace slag as raw material[J]. Iron Steel Vanadium Titanium, 2016,37(6):24−28. (张苏新, 杨仰军, 陆平, 等. 含钛碳化高炉渣为原料制备TiCl4试验研究[J]. 钢铁钒钛, 2016,37(6):24−28. doi: 10.7513/j.issn.1004-7638.2016.06.005
    [11] Gao Qirui, Song Bo, Yang Zhanbing, et al. Carbonization of blast furnace slag bearing titanium and separation of TiC phase by super gravity[J]. Nonferrous Metals Science and Engineering, 2017,8(2):1−7. (高启瑞, 宋波, 杨占兵, 等. 含钛高炉渣碳化及超重力分离碳化钛的研究[J]. 有色金属科学与工程, 2017,8(2):1−7.
    [12] Li Z, Lei Y, Ma W, et al. Preparation of high-purity TiSi2 and eutectic Si–Ti alloy by separation of Si–Ti alloy for clean utilization of Ti-bearing blast furnace slag[J]. Sep. Purif. Technol., 2021,265:118473. doi: 10.1016/j.seppur.2021.118473
    [13] Zhang Z, Lv H, Li X, et al. Conversion of CaTi1–xMnxO3–δ-based photocatalyst for photocatalytic reduction of NO via structure-reforming of Ti-bearing blast furnace slag[J]. ACS Sustain. Chem. Eng., 2019,7:10299−10309. doi: 10.1021/acssuschemeng.9b00097
    [14] Qiu Shengtao, Zhang Mingbo, Li Jianxin, et al. Recent progress and prospective of comprehensive utilization of Ti-bearing blast furnace slag[J]. Iron & Steel, 2016,51(7):1−8. (仇圣桃, 张明博, 李建新, 等. 含钛高炉渣资源化综合利用研究现状与展望[J]. 钢铁, 2016,51(7):1−8.
    [15] Frac M, Pichor W, Szoldra P, et al. Cement composites with expanded graphite/paraffin as storage heater[J]. Constr Build Mater., 2021,275:122126. doi: 10.1016/j.conbuildmat.2020.122126
    [16] Yuan T F, Choi J S, Hong S H, et al. Enhancing the electromagnetic shielding and impact resistance of a reinforced concrete wall for protective structures[J]. Cem Concr Compos., 2021,122:104148. doi: 10.1016/j.cemconcomp.2021.104148
    [17] Monteiro A O, Costa P M F J D, Oeser M, et al. Dynamic sensing properties of a multifunctional cement composite with carbon black for traffic monitoring[J]. Smart Mater Struct., 2020,29:025023. doi: 10.1088/1361-665X/ab62e2
    [18] Wang H, Shi F, Shen J, et al. Research on the self-sensing and mechanical properties of aligned stainless steel fiber-reinforced reactive powder concrete[J]. Cem Concr Compos., 2021,119:104001. doi: 10.1016/j.cemconcomp.2021.104001
    [19] Ma Shining, Liu Xiaojun, Zhang Yuanlong, et al. Application study on snow-ice melting for airport carbon fiber conductive concrete pavement[J]. Subgrade Engineering, 2011,(3):182−184. (马世宁, 刘晓军, 张元龙. 碳纤维导电混凝土道面机场除冰雪的应用研究[J]. 路基工程, 2011,(3):182−184. doi: 10.3969/j.issn.1003-8825.2011.03.053
    [20] Zhang Yiming, Yu Lehua. Smart properties of steel fiber and carbon nano tube reinforced conductive concrete during flexural process[J]. Concrete, 2017,(9):49−52. (张苡铭, 俞乐华. 钢纤维-碳纳米管导电混凝土的受弯机敏性试验研究[J]. 混凝土, 2017,(9):49−52.
    [21] 丁益林. 钢纤维锈蚀对砂浆力学及物质传输性能影响的试验研究[D]. 大连: 大连理工大学, 2021.

    Ding Yilin. Experiment study on the influence of steel fiber corrosion on mechanical and mass transport properties of mortar [D]. Dalian: Dalian University of Technology, 2021.
    [22] Guo Chuanhui, Tang Wuan, Liu Shuhua. Properties and microstructure of conductive concrete containing graphite powder[J]. Bulletin of the Chinese Ceramic Society, 2017,36(9):3174−3179. (郭传慧, 汤婉, 刘数华. 石墨粉导电混凝土的性能与微结构[J]. 硅酸盐通报, 2017,36(9):3174−3179. doi: 10.16552/j.cnki.issn1001-1625.2017.09.052
    [23] 崔素萍, 刘永肖, 兰明章, 等. 石墨-水泥基复合材料的制备与性能[J]. 硅酸盐学报, 2007, 35: 91-95.

    Cui Suping, Liu Yongxiao, Lan Mingzhang, et al. Preparation and properties of graphite-cement based composites[J]. Journal of the Chinese Ceramic Society, 2007, 35: 91-95.
    [24] Fang Zhenggang, Huang Peng, Xue Feng, et al. Effects of the mixing amount of graphite and carbon fiber on macro properties of concrete[J]. Building Structure, 2017,47(21):59−62. (房正刚, 黄彭, 薛峰, 等. 石墨和碳纤维掺量对混凝土宏观性能的影响[J]. 建筑结构, 2017,47(21):59−62. doi: 10.19701/j.jzjg.2017.21.011
    [25] Ge Yuchuan, Liu Shuhua. Research progress on characteristics of carbon fiber conductive concrete[J]. Bulletin of the Chinese Ceramic Society, 2019,38(8):2442−2447. (葛宇川, 刘数华. 碳纤维导电混凝土特性研究进展[J]. 硅酸盐通报, 2019,38(8):2442−2447.
    [26] 邓宵. 掺铁导电集料及其水泥基导电复合材料的制备与性能研究[D]. 武汉: 武汉理工大学, 2011.

    Deng Xiao. Preparation and performance investigation of iron containing aggregate and its cement-based conductive composites [D]. Wuhan: Wuhan University of Technology, 2011.
    [27] Lamastra F R, Chougan M, Marotta E, et al. Toward a better understanding of multifunctional cement-based materials: The impact of graphite nanoplatelets (GNPs)[J]. Ceram Int, 2021,47(14):20019−20031. doi: 10.1016/j.ceramint.2021.04.012
    [28] Dong W, Guo Y, Sun Z, et al. Development of piezoresistive cement-based sensor using recycled waste glass cullets coated with carbon nanotubes[J]. J Clean Prod, 2021,314:127968. doi: 10.1016/j.jclepro.2021.127968
    [29] Dong Q, Wang G, Chen X, et al. Recycling of steel slag aggregate in Portland cement concrete: An overview[J]. J Clean Prod, 2021,282:124447. doi: 10.1016/j.jclepro.2020.124447
    [30] Ozturk M, Akgol O, Sevim U K, et al. Experimental work on mechanical, electromagnetic and microwave shielding effectiveness properties of mortar containing electric arc furnace slag[J]. Constr Build Mater, 2018,165:58−63. doi: 10.1016/j.conbuildmat.2018.01.031
    [31] Tang Chenjun, Xuan Ming, Ding Xiang, et al. Effects of carbonized titanium-bearing blast furnace slag on the compressive strength and electrical resistivity of cement mortar[J]. The Chinese Journal of Process Engineering, 2022,(4):499−505. (唐晨钧, 宣明, 丁祥, 等. 含钛高炉渣的碳化产物对水泥砂浆强度及电阻率的影响[J]. 过程工程学报, 2022,(4):499−505. doi: 10.12034/j.issn.11009-12606X.221095
    [32] Doo-Yeol Y, You I, Seung-Jung L. Electrical properties of cement-based composites with carbon nanotubes, graphene, and graphite nanofibers[J]. Sensors, 2017,17(5):1064−1076. doi: 10.3390/s17051064
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  150
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-19
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回