Thermodynamic evaluation on oxygen potential of V-O solid solution and preparation of metallic vanadium
-
摘要: 非金属元素O熔解在V晶格中形成固溶体,固溶体的氧脱除极限取决于氧的活度和温度,但目前对V-O固溶体热力学性质研究较少。以 Sieverts 定律为计算准则,收集V-O体系热力学数据,计算获得了不同氧含量下固溶体VOy的氧势。同时将热力学模型导入 Factsage 并建立自定义数据库,以辅助计算金属热还原法制备钒的相变及平衡组成,明确Ca、Mg、Al等还原剂的极限脱氧能力。结果表明,合理控制Al加入量和反应温度所制备出的金属钒理论上氧含量可降至约0.1%~0.5%;Mg作为还原剂时,理论上可制备出氧含量0.01%~0.1%的金属钒产品;Ca的还原能力更出色,制备出金属钒产品中氧含量<0.01%;增加C添加量、提升反应温度、降低PCO 理论上均可制备出氧含量低于0.1%的金属钒产品。Abstract: Non-metallic element O dissolves in the V lattice to form a V-O solid solution. The oxygen removal limit of the solid solution depends on the oxygen activity and temperature, but currently, there are few studies on the thermodynamic properties of the V-O solid solution. In this paper, based on the Sieverts’ law as the calculation criterion, the thermodynamic data of the V-O system was collected, and the oxygen potential of the solid solution VOy with different oxygen contents was calculated. At the same time, the thermodynamic model was imported into Factsage and a custom database was established to assist in calculating the phase transition and equilibrium composition of vanadium prepared by the metal thermal reduction method, and to clarify the limit deoxidation ability of reducing agents such as Ca, Mg, and Al. The results show that by reasonably controlling the addition amount of Al and the reaction temperature, the oxygen content in the prepared metallic vanadium can theoretically be reduced to approximately 0.1 wt%-0.5 wt%. When Mg is used as the reducing agent, the metallic vanadium product with an oxygen content of 0.01 wt%-0.1 wt% can be theoretically prepared. The reduction ability of Ca is more excellent, and the oxygen content in the prepared metallic vanadium product is < 0.01 wt%. Increasing the addition amount of C, increasing the reaction temperature, and reducing PCO can theoretically prepare metallic vanadium products with an oxygen content lower than 0.1 wt%.
-
Key words:
- V-O solid solution /
- oxygen potential /
- metal thermal reduction /
- metallic vanadium /
- deoxidation limit
-
表 1 基于生成1 mol VOy的标准生成吉布斯自由能
Table 1. The standard Gibbs free energy of formation of VOy with temperature (based on formation of 1 mol VOy)
V-O固溶体 氧含量/% $ \Delta G{_{\rm{f}}^{{\theta}}} $(VOy)/(kJ·mol−1)= a + b(T/K) +
c(T/K)ln(T/K) + σ/(kJ·mol−1)A b c σ V2O 13.56 − 425.0552 0.0160 0.0072 ± 0.3833 V4O 7.27 − 433.6947 0.0027 0.0070 ± 0.2209 V9O 3.37 − 466.9019 0.0531 0.0018 ± 0.5393 V20O 1.50 − 518.6935 0.3808 − 0.0392 ± 0.2400 V31O 1.00 − 518.6935 0.3771 − 0.0392 ± 0.2836 V62O 0.50 − 518.6935 0.3714 − 0.0392 ± 0.2350 V157O 0.20 − 518.6935 0.3636 − 0.0392 ± 0.2933 V255O 0.12 − 518.6935 0.3596 − 0.0392 ± 0.2682 V313O 0.10 − 518.6935 0.3579 − 0.0392 ± 0.1623 V627O 0.05 − 518.6935 0.3521 − 0.0392 ± 0.1623 V 1568 O0.02 − 518.6935 0.3445 − 0.0392 ± 0.1623 V 3167 O0.01 − 518.6935 0.3387 − 0.0392 ± 0.1623 -
[1] LI L, SONG B, CHENG J, et al. Effects of vanadium precipitates on hydrogen trapping efficiency and hydrogen induced cracking resistance in X80 pipeline steel[J]. International journal of hydrogen energy, 2018,43(36):17353-17363. doi: 10.1016/j.ijhydene.2018.07.110 [2] ZHANG Y, BAO S, LIU T, et al. The technology of extracting vanadium from stone coal in China: History, current status and future prospects[J]. Hydrometallurgy, 2011,109(1):116-124. [3] ZHENG Q, XING F, LI X, et al. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery[J]. Journal of power sources, 2016,324:402-411. doi: 10.1016/j.jpowsour.2016.05.110 [4] ZHOU Y, CAO L, WANG L, et al. Monte Carlo analyses and experimental investigation of the vanadium self-powered neutron detector in 60Co source and research pulsed reactor[J]. Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2023, 1056: 168704. [5] PENG X, LI Q, WANG K. Dynamic compensation of vanadium self powered neutron detectors based on Luenberger form filter[J]. Progress in nuclear energy (New series), 2015,78:190-195. doi: 10.1016/j.pnucene.2014.09.006 [6] KHOSHAHVAL F, PARK M, SHIN H C, et al. Vanadium, rhodium, silver and cobalt self-powered neutron detector calculations by RAST-K v2.0[J]. Annals of nuclear energy, 2018,111:644-659. doi: 10.1016/j.anucene.2017.09.048 [7] KıLıNç B, KOCAMAN E, ŞEN Ş, et al. Effect of vanadium content on the microstructure and wear behavior of Fe(13-x)VxB7(x=0-5) based hard surface alloy layers[J]. Materials characterization, 2021,179:111324. doi: 10.1016/j.matchar.2021.111324 [8] RAAHGINI C, VERDI D. Abrasive wear performance of laser cladded Inconel 625 based metal matrix composites: Effect of the vanadium carbide reinforcement phase content[J]. Surface & coatings technology, 2022,429:127975. [9] CHENG Y, GONG J, CAO B, et al. Ultrafine VN nanodots induced generation of abundant cobalt single-atom active sites on nitrogen-doped carbon nanotube for efficient hydrogen evolution[J]. Journal of energy chemistry, 2022,68:646-657. doi: 10.1016/j.jechem.2021.11.035 [10] HUBER`, JANKOVSKý O, SEDMIDUBSKý D, et al. Synthesis, structure, thermal, transport and magnetic properties of VN ceramics[J]. Ceramics international, 2016,42(16):18779-18784. doi: 10.1016/j.ceramint.2016.09.019 [11] XU L, WANG F, ZHOU Y, et al. Fabrication and wear property of in-situ micro-nano dual-scale vanadium carbide ceramics strengthened wear-resistant composite layers[J]. Ceramics international, 2021,47(1):953-964. doi: 10.1016/j.ceramint.2020.08.209 [12] SAEIDI S S, VASEGHI B, REZAEI G, et al. Magnetic, optical and phase transformation properties of Fe and Co doped VO2(A) nanobelts[J]. Journal of solid state chemistry, 2022,306:122729. doi: 10.1016/j.jssc.2021.122729 [13] WANG S, GUO Y, ZHENG F, et al. Behavior of vanadium during reduction and smelting of vanadium titanomagnetite metallized pellets[J]. Transactions of Nonferrous Metals Society of China, 2020,30(6):1687-1696. doi: 10.1016/S1003-6326(20)65330-4 [14] SILIN I, HAHN K, GÜRSEL D, et al. Mineral Processing and Metallurgical Treatment of Lead Vanadate Ores[J]. Minerals (Basel), 2020,10(2):197. [15] KONG Y, CHEN J, LI B, et al. Mechanistic insight into the influence of Al2O3 concentration on the electro-reduction of V2O3 to vanadium in molten Na3AlF6[J]. Electrochimica acta, 2019,295:452-460. doi: 10.1016/j.electacta.2018.10.155 [16] KONG Y, LI B, CHEN J, et al. Electrochemical reduction of vanadium sesquioxide in low-temperature molten fluoride salts[J]. Electrochimica acta, 2020,342:136081. doi: 10.1016/j.electacta.2020.136081 [17] LI J B, MA Z L. Application and preparation method of metal vanadium[J]. Yunnan Metallurgy, 2019,48(6):33-38. (李建兵, 马治龙. 金属钒的用途及其制备方法[J]. 云南冶金, 2019,48(6):33-38.LI J B, MA Z L. Application and preparation method of metal vanadium[J]. Yunnan Metallurgy, 2019, 48(6): 33-38. [18] LU W L, ZHANG Y, SUN P, et al. A review on the approaches to the production of vanadium metal[J]. The Chinese Journal of Process Engineering, 2021,21(10):1117-1131. (卢伟亮, 张盈, 孙沛, 等. 金属钒的制备方法综述[J]. 过程工程学报, 2021,21(10):1117-1131. doi: 10.12034/j.issn.1009-606X.220294LU W L, ZHANG Y, SUN P, et al. A review on the approaches to the production of vanadium metal[J]. The Chinese Journal of Process Engineering, 2021, 21(10): 1117-1131. doi: 10.12034/j.issn.1009-606X.220294 [19] LINDVALL M, GRAN J, SICHEN D. Determination of the vanadium solubility in the Al2O3-CaO(25mass%)-SiO2 system[J]. Calphad, 2014,47:50-55. doi: 10.1016/j.calphad.2014.06.003 [20] GAO F, NIE Z, YANG D, et al. Environmental impacts analysis of titanium sponge production using Kroll process in China[J]. Journal of cleaner production, 2018,174:771-779. doi: 10.1016/j.jclepro.2017.09.240 [21] XIA Y, LEFLER H D, FANG Z Z, et al. Chapter 17-Energy consumption of the Kroll and HAMR processes for titanium production[M]//Fang Z Z, Froes F H, Zhang Y. Extractive Metallurgy of Titanium. Elsevier, 2020: 389-410. [22] LEE D W L H S Y. Synthesis of vanadium powder by magnesiothermic reduction[J]. Adv Mater Res, 2014,1025-6:509-514. [23] MIYAUCHI A, OKABE T H. Production of metallic vanadium by preform reduction process[J]. Materials Transactions, 2010,51(6):1102-1108. doi: 10.2320/matertrans.M2010027 [24] INAZU N, SUZUKI E, FUJII S, et al. A facile formation of vanadium(0) by the reduction of vanadium pentoxide pelletized with magnesium oxide enabled by microwave irradiation[J]. Chemistry Select (Weinheim), 2020,5(10):2949-2953. doi: 10.1002/slct.201904547 [25] WU C L, WANG B H, CHEN X, et al. Preparation of vanadium powder by calcium thermic reduction of calcium vanadate in molten salts[J]. Nonferrous Metals(Extractive Metallurgy), 2019(6):52-54. (吴春亮, 王宝华, 陈兴, 等. 熔盐中钙热还原钒酸钙制备金属钒粉[J]. 有色金属(冶炼部分), 2019(6):52-54.WU C L, WANG B H, CHEN X, et al. Preparation of vanadium powder by calcium thermic reduction of calcium vanadate in molten salts[J]. Nonferrous Metals(Extractive Metallurgy), 2019(6): 52-54. [26] WANG F, XU B, WAN H, et al. Preparation of vanadium powders by calcium vapor reduction of V2O3 under vacuum[J]. Vacuum, 2020,173:109133. doi: 10.1016/j.vacuum.2019.109133 [27] R K. On the Carbonthermic reduction of vanadium metal and vanadium alloys[J]. Metall, 1967,21:19-22. [28] YANG Y, MAO H, SELLEBY M. Thermodynamic assessment of the V-O system[J]. Calphad, 2015,51:144-160. doi: 10.1016/j.calphad.2015.08.003 [29] PEI G, XIANG J, ZHONG D, et al. A clean process of preparing VO as LIBs anode materials via the reduction of V2O3 powder in a H2 atmosphere: Thermodynamic assessment, isothermal kinetic analysis, and electrochemistry performance evaluation-Science Direct[J]. Journal of Alloys and Compounds, 2020,845:156305. doi: 10.1016/j.jallcom.2020.156305 [30] KIM Y S. V-O thermochemistry from the pure metal to the monoxide[J]. Journal of Alloys and Compounds, 2000,312(1):86-93. [31] ZHONG D P, PEI G S, XIANG J Y, et al. Thermodynamic behavior of dissolved oxygen and hydrogen in pure vanadium[J]. Journal of mining and metallurgy. Section B, Metallurgy, 2021,57(3):413-419. doi: 10.2298/JMMB210108037Z [32] WANG W, OLANDER D R. Thermochemistry of the U-O and Zr-O Systems[J]. Journal of the American Ceramic Society, 1993,76(5):1242-1248. doi: 10.1111/j.1151-2916.1993.tb03748.x [33] OLANDER D R. Heat effects in zircaloy oxidation by steam[J]. Journal of the Electrochemical Society, 1984,131(9):2161-2169. doi: 10.1149/1.2116041 [34] WANG W. Partial thermodynamic properties of the Ti-N system[J]. Journal of Alloys and Compounds, 1996,233(1):89-95. [35] WANG W, OLANDER D R. Computational thermodynamics of the Zr-N system[J]. Journal of Alloys and Compounds, 1995,224(1):153-158. doi: 10.1016/0925-8388(95)01528-0 [36] WANG W. Thermodynamic evaluation of the titanium-hydrogen system[J]. Journal of Alloys and Compounds, 1996,238(1):6-12. [37] LUPIS C H P. Chemical thermodynamics of materials[M]. New York: North-Holland, 1983. -