留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富氧方式对高炉风口回旋区状态的影响研究

郑魁 赵鹏 胡鹏 黄云 张建良 徐润生

郑魁, 赵鹏, 胡鹏, 黄云, 张建良, 徐润生. 富氧方式对高炉风口回旋区状态的影响研究[J]. 钢铁钒钛, 2024, 45(6): 108-118. doi: 10.7513/j.issn.1004-7638.2024.06.015
引用本文: 郑魁, 赵鹏, 胡鹏, 黄云, 张建良, 徐润生. 富氧方式对高炉风口回旋区状态的影响研究[J]. 钢铁钒钛, 2024, 45(6): 108-118. doi: 10.7513/j.issn.1004-7638.2024.06.015
Zheng Kui, Zhao Peng, Hu Peng, Huang Yun, Zhang Jianliang, Xu Runsheng. Study on the effects of oxygen enrichment modes on the tuyere raceway states of blast furnace[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 108-118. doi: 10.7513/j.issn.1004-7638.2024.06.015
Citation: Zheng Kui, Zhao Peng, Hu Peng, Huang Yun, Zhang Jianliang, Xu Runsheng. Study on the effects of oxygen enrichment modes on the tuyere raceway states of blast furnace[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 108-118. doi: 10.7513/j.issn.1004-7638.2024.06.015

富氧方式对高炉风口回旋区状态的影响研究

doi: 10.7513/j.issn.1004-7638.2024.06.015
基金项目: 安徽省重点研究与开发计划(202210700037);五矿集团科技专项(2021ZXD01)。
详细信息
    作者简介:

    郑魁,1988年出生,男,硕士,高级工程师,主要从事钒钛磁铁矿开发利用与研究,E-mail: zkyejin@163.com

    通讯作者:

    徐润生,1988年出生,男,博士,副教授,主要研究方向:炼铁新技术和冶金二次资源综合利用与节能减排等,E-mail: xurunsheng@ustb.edu.cn

  • 中图分类号: TF538.5

Study on the effects of oxygen enrichment modes on the tuyere raceway states of blast furnace

  • 摘要: 依据国内某企业冶炼钒钛磁铁矿高炉的实际尺寸建立了三维物理模型,利用数值模拟的方法对比研究了不同富氧方式下煤粉在风口回旋区内的流动、燃烧行为。结果表明,减风富氧与定风富氧方式工况下,风口气流速度变化随富氧率变化的整体趋势一致,但变化幅度差距显著,即富氧率增加1%,风口截面速度分别增加4.25 m/s(定风)和0.41 m/s(减风)。两种富氧方式下,回旋区内的温度、还原气体含量及煤粉燃尽率与富氧率的变化趋势一样,即富氧率增加,温度增加,高温区域扩大,还原气体含量增加,煤粉的燃尽率上升。其中,减风富氧时由于热风流量减小,带入高炉的N2量减少,煤气中CO和H2的含量变化较大,对高炉减少氮化碳和碳化钛生成、改善铁矿还原效果具有较好的帮助,建议高炉提高富氧率采用减风富氧模式。经计算,富氧率每增加1%,回旋区平均温度增加34.22 K(定风)和32.88 K(减风);减风富氧条件下,富氧率每增加1%,热风带入高炉的N2量减少10 m3/min,煤气中的CO质量浓度上升8.61%。
  • 图  1  基本工况气相速度云图

    Figure  1.  Gas-phase velocity contour under basic operating conditions

    图  2  沿风口中心线方向气体温度变化

    Figure  2.  Changes in gas temperature along the center line of the tuyere

    图  3  风口中心线上气体含量变化曲线

    Figure  3.  Curves of gas content on the center line of the tuyere

    图  4  定风富氧不同富氧率下的速度场分布

    Figure  4.  Velocity field distribution at different oxygen enrichment rates

    图  5  定风富氧下富氧率变化时沿煤粉流股温度变化

    Figure  5.  The variation of temperatures along the pulverized coal stream when the oxygen enrichment rate changes

    图  6  定风富氧时不同富氧率下回旋区内的最高温度和平均温度

    Figure  6.  Maximum and average temperatures in the raceway at different oxygen enrichment rates

    图  7  不同富氧率条件下风口、回旋区内气体分布

    Figure  7.  Gas distribution in the tuyere and raceway under different oxygen enrichment rates

    图  8  沿煤粉流股中心线上气体成分变化

    Figure  8.  Changes in gas composition along the centerline of the pulverized coal stream

    图  9  回旋区出口处煤粉燃尽率

    Figure  9.  Pulverized coal burnout rate at the exit of the raceway

    图  10  减风富氧条件下气体速度变化

    Figure  10.  Changes in gas velocity under reduced air and oxygen enrichment conditions

    图  11  减风富氧条件下沿煤粉流股中心线上气相温度变化曲线

    Figure  11.  Variation curves of gas phase temperature along the center line of pulverized coal stream under reduced wind and oxygen enrichment conditions

    图  12  减风富氧条件下风口中心线上CO2和CO含量随富氧率的变化

    Figure  12.  Curves of CO2 and CO contents on the center line of the tuyere when the oxygen enrichment rate changes

    图  13  减风富氧条件下回旋区出口处煤粉燃尽率

    Figure  13.  under reduced wind and oxygen enrichment conditions

    表  1  高炉的实际操作条件

    Table  1.   Actual operating conditions of blast furnaces

    风口数/个 高炉有效容积/m3 风量/(m3·min−1) 风压/kPa 氧气浓度/% 煤比/(kg·t−1) 热风温度/℃ 载气成分
    24 1750 4000 360 24(基准工况) 95 1220 氮气
    下载: 导出CSV

    表  2  定风富氧条件下富氧率变化时的风量

    Table  2.   The air volumes with changes of the oxygen enrichment rates of the fixed air

    序号 定风富氧率/% 总风量(工况条件)/(m3·min−1) 热风流量(工况条件)/(m3·min−1) 直吹管入口速度/(m·s−1 煤枪入口速度/(m·s−1
    1 3 4157.89 4000 195.77 12.50
    2 5 4270.27 4000 201.07 12.50
    3 7 4388.89 4000 206.65 12.50
    4 9 4514.29 4000 212.56 12.50
    5 11 4647.06 4000 218.81 12.50
    下载: 导出CSV

    表  3  减风富氧富氧率变化时的风量条件

    Table  3.   Air volumes with changes of the oxygen enrichment rate of the reduced air

    序号 减风富氧率/% 总风量(工况条件)/(m3·min−1) 热风流量(工况条件)/(m3·min−1) 直吹管入口速度/(m·s−1 煤枪入口速度/(m·s−1
    1 3 4157.89 4000 195.77 12.50
    2 5 4157.89 3895 195.77 12.50
    3 7 4157.89 3789 195.77 12.50
    4 9 4157.89 3684 195.77 12.50
    5 11 4157.89 3579 195.77 12.50
    下载: 导出CSV

    表  4  沿煤粉流股上最高温度和回旋区内平均温度

    Table  4.   Maximum temperatures along the distance from lance tip and average temperature in the raceway

    减风富氧率/%沿煤粉流股中心线最高温度/K回旋区平均温度/K
    32859.872676.71
    52912.922767.03
    72976.112838.74
    93027.912895.40
    113071.752939.71
    下载: 导出CSV
  • [1] Zhang Cuiliu, Wang Guangwei, Ning Xiaojun, et al. Numerical simulation of combustion behaviors of hydrochar derived from low-rank coal in the raceway of blast furnace[J]. Fuel, 2020,278:118267. doi: 10.1016/j.fuel.2020.118267
    [2] Babich A, Yaroshevskii S, Formoso A, et al. Co-injection of noncoking coal and natural gas in blast furnace[J]. ISIJ International, 1999,39(3):229-238. doi: 10.2355/isijinternational.39.229
    [3] Peter Richard Austin, Hiroshi Nogami, Jun-ichiro Yagi. A mathematical model of four phase motion and heat transfer in the blast furnace[J]. ISIJ International, 1997,37(5):458-467. doi: 10.2355/isijinternational.37.458
    [4] Dong X F, Yu A B, Chew S J, et al. Modeling of blast furnace with layered cohesive zone[J]. Metallurgical and Materials Transactions B, 2010,41(2):330-349. doi: 10.1007/s11663-009-9327-y
    [5] Kuang S B, Li Z Y, Yan D L, et al. Numerical study of hot charge operation in ironmaking blast furnace[J]. Minerals Engineering, 2014, 63: 45-56.
    [6] Hannu Helle, Mikko Helle, Henrik Saxén. Nonlinear optimization of steel production using traditional and novel blast furnace operation strategies[J]. Chemical Engineering Science, 2011,66(24):6470-6481. doi: 10.1016/j.ces.2011.09.006
    [7] Zhang Wei, Zhang Juhua, Xue Zhengliang, et al. Unsteady analyses of the top gas recycling oxygen blast furnace[J]. ISIJ International, 2016,56(8):1358-1367. doi: 10.2355/isijinternational.ISIJINT-2016-090
    [8] Kushnir D, Hansen T, Vogl V, et al. Adopting hydrogen direct reduction for the Swedish steel industry: A technological innovation system (TIS) study[J]. J Clean Prod, 2020,242:13.
    [9] Zhang Fuming, Cao Chaozhen, Meng Xianglong, et al. Technological status and tendency of modern blast furnace[J]. Advanced Materials Research, 2013,813:192-195. doi: 10.4028/www.scientific.net/AMR.813.192
    [10] Duan Guojian, Zhao Zhilong. Discussion of blast furnace oxygen enriched coal injection[J]. Hebei Metallurgy, 2017(6):8-12. (段国建, 赵志龙. 高炉富氧喷煤技术探讨[J]. 河北冶金, 2017(6):8-12.

    Duan Guojian, Zhao Zhilong. Discussion of blast furnace oxygen enriched coal injection[J]. Hebei Metallurgy, 2017(6): 8-12.
    [11] Zhang Fuming. Technological progress for contemporary ultra large sized blast furnoace[C]// 2012 National Conference on Ironmaking Production Technology and Annual Conference on Ironmaking. Wuxi: Chinese Society for Metals, 2012. (张福明. 当代巨型高炉技术进步[C]//2012年全国炼铁生产技术会议暨炼铁学术年会. 无锡: 中国金属学会, 2012.

    Zhang Fuming. Technological progress for contemporary ultra large sized blast furnoace[C]// 2012 National Conference on Ironmaking Production Technology and Annual Conference on Ironmaking. Wuxi: Chinese Society for Metals, 2012.
    [12] Liu Yingshu, Yang Tianjun, Cang Daqiang, et al. The progress of research and development in BF oxygen-coal injection[J]. Ironmaking, 1996(4):9-12. (刘应书, 杨天钧, 苍大强, 等. 高炉富氧喷煤技术研究开发的进展[J]. 炼铁, 1996(4):9-12.

    Liu Yingshu, Yang Tianjun, Cang Daqiang, et al. The progress of research and development in BF oxygen-coal injection[J]. Ironmaking, 1996(4): 9-12.
    [13] Cheng Lanbo, Gao Guangchun, Ma Shuhan. Experiment of BF operation with oxygen rich coal injection at Anshan iron and steel[J]. Iron & Steel, 1988(11):1-10. (成兰伯, 高光春, 马树涵. 鞍钢2号高炉富氧大喷吹冶炼试验[J]. 钢铁, 1988(11):1-10.

    Cheng Lanbo, Gao Guangchun, Ma Shuhan. Experiment of BF operation with oxygen rich coal injection at Anshan iron and steel[J]. Iron & Steel, 1988(11): 1-10.
    [14] Zeng Weitao, Zhang Qingxi. Operating system adjustment under production limitation mode in WISCO No. 8 BF[J]. Ironmaking, 2022,41(1):6-9. (曾伟涛, 张庆喜. 武钢8号高炉限产模式下操作制度的调整[J]. 炼铁, 2022,41(1):6-9.

    Zeng Weitao, Zhang Qingxi. Operating system adjustment under production limitation mode in WISCO No. 8 BF[J]. Ironmaking, 2022, 41(1): 6-9.
    [15] Xiang Mingwu, Zhou Qiang, Zhang Ling, et al. Technical characteristics of Shagang 5800 m3 blast furnace[J]. Ironmaking, 2010,29(2):1-6. (项明武, 周强, 张灵, 等. 沙钢5800 m3高炉工艺技术特点[J]. 炼铁, 2010,29(2):1-6.

    Xiang Mingwu, Zhou Qiang, Zhang Ling, et al. Technical characteristics of Shagang 5800 m3 blast furnace[J]. Ironmaking, 2010, 29(2): 1-6.
    [16] Wang Jun, Xu Hui, Zhang Peifeng, et al. Management for maintaining low consumption production in baosteel’s No. 4 BF[J]. Ironmaking, 2020,39(4):1-7. (王俊, 徐辉, 张培峰, 等. 宝钢4号高炉长期低耗生产管理[J]. 炼铁, 2020,39(4):1-7.

    Wang Jun, Xu Hui, Zhang Peifeng, et al. Management for maintaining low consumption production in baosteel’s No. 4 BF[J]. Ironmaking, 2020, 39(4): 1-7.
    [17] Liu Yiran, Shen Yansong. Three-dimensional modelling of charcoal combustion in an industrial scale blast furnace[J]. Fuel, 2019,258:116088. doi: 10.1016/j.fuel.2019.116088
    [18] Hu Z J, Liu Y R, Xu H, et al. Co-combustion of semicoke and coal in an industry ironmaking blast furnace: Lab experiments, model study and plant tests[J]. Fuel Processing Technology, 2019, 196: 106165.
    [19] Shen Y S, Maldonado D, Guo B Y, et al. Computational fluid dynamics study of pulverized coal combustion in blast furnace raceway[J]. Industrial and Engineering Chemistry Research, 2009,48(23):10314-10323. doi: 10.1021/ie900853d
    [20] Zhou Zhenfeng, Wang Ruihao, Yi Qiujie, et al. Combustion enhancement of pulverized coal with targeted oxygen-enrichment in an ironmaking blast furnace[J]. Processes, 2021,9(3):440.
    [21] Rastko Jovanovic, Aleksandra Milewska, Bartosz Swiatkowski, et al. Numerical investigation of influence of homogeneous/heterogeneous ignition/combustion mechanisms on ignition point position during pulverized coal combustion in oxygen enriched and recycled flue gases atmosphere[J]. International Journal of Heat and Mass Transfer, 2011,54(4):921-931. doi: 10.1016/j.ijheatmasstransfer.2010.10.011
    [22] Nie Haiqi, Li Zhaoyang, Kuang Shibo, et al. Numerical investigation of oxygen-enriched operations in blast furnace ironmaking[J]. Fuel, 2021,296:120662. doi: 10.1016/j.fuel.2021.120662
    [23] Liu Yiran, Shen Yansong. CFD study of charcoal combustion in a simulated ironmaking blast furnace[J]. Fuel Processing Technology, 2019,191:152-167. doi: 10.1016/j.fuproc.2019.04.004
    [24] Shen Y S, Yu A B. Modelling of injecting a ternary coal blend into a model ironmaking blast furnace[J]. Minerals Engineering, 2016,90:89-95. doi: 10.1016/j.mineng.2015.12.009
    [25] Liu Yiran, Curtis Jennifer, Shen Yansong. Computational fluid dynamics study of re-blowin operation in an ironmaking blast furnace[J]. Powder Technology, 2020,361:145-159. doi: 10.1016/j.powtec.2019.09.061
    [26] Shivadev K Ubhayakar, David B Stickler, Charles W Von Rosenberg, et al. Rapid devolatilization of pulverized coal in hot combustion gases[J]. Symposium (International) on Combustion, 1977,16(1):427-436. doi: 10.1016/S0082-0784(77)80342-1
    [27] Du Shanwen, Yeh Chengpeng, Chen Weihsin, et al. Burning characteristics of pulverized coal within blast furnace raceway at various injection operations and ways of oxygen enrichment[J]. Fuel, 2015,143:98-106. doi: 10.1016/j.fuel.2014.11.038
    [28] Liao Junhai, Yu Aibing, Shen Yansong. Modelling the injection of upgraded brown coals in an ironmaking blast furnace[J]. Powder Technology, 2016,314:550-556.
    [29] Kou Mingyin, Zhou Heng, Hong Zhibin, et al. Numerical analysis of effects of different blast parameters on the gas and burden distribution characteristics inside blast furnace[J]. ISIJ International, 2020,60(5):856-864. doi: 10.2355/isijinternational.ISIJINT-2019-389
    [30] Xue Qingguo, Dong Zeshang, Wang Jingsong, et al. The introduction and process optimization research of oxygen blast furnace ironmaking technology [M]//Liu Xingbo, Liu Zhengdong, Brinkman Kyle, et al. Energy Materials 2017. Cham: Springer International Publishing, 2017: 31-39.
    [31] Zhou Zhenfeng, Xue Qingguo, Li Changle, et al. Coal flow and combustion characteristics under oxygen enrichment way of oxygen-coal double lance[J]. Applied Thermal Engineering, 2017,123:1096-1105. doi: 10.1016/j.applthermaleng.2017.05.177
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  34
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-04
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回